
Using Escalante to build

Visual Language Applications

Je�rey D. McWhirter Zulah K. F. Eckert

Gary J. Nutt

CU-CS-655-93 October 1993

�

University of Colorado at Boulder

Technical Report CU-CS-655-93

Department of Computer Science

Campus Box 430

University of Colorado

Boulder, Colorado 80309

Using Escalante to build

Visual Language Applications

Je�rey D. McWhirter Zulah K. F. Eckert

Gary J. Nutt

October 1993

Abstract

Constructing visual language applications is a di�cult task. The Escalante system

facilitates the process of application construction by supporting the high level speci�-

cation of a visual language and the generation of code that realizes the language within

a working application. Using Escalante one can rapidly develop highly functional ap-

plications for a wide variety of visual languages with a minimal amount of manual

coding. Escalante is written in C++ and runs under X Windows. This paper presents

an overview of the Escalante system and a detailed set of examples that can guide the

development of visual language applications using Escalante.

i

Contents

1 Introduction 1

1.1 Basic System Architecture : 1

2 Principles 3

2.1 Language Module : 3

2.1.1 Graph Objects : 4

2.1.2 Elements and Relations : 4

2.1.3 Visual Graph Elements : 6

2.1.4 Graphic Primitives : 7

2.1.5 Multiple Representations using Structural Graph Elements : : : : : : 9

2.2 Editor Module : 10

2.3 Editor/Language Con�guration : 12

3 Creating a Visual Language Application 13

3.1 ET++ : 13

3.2 GrandView Overview : 14

3.2.1 Class View : 15

3.2.2 Prototype View : 16

3.2.3 Attribute View : 17

3.2.4 Gfx View : 18

3.2.5 Event View : 25

3.2.6 Relation Attribute Map View : 27

3.2.7 Check Tail/Head View : 27

3.2.8 S � V Attribute Map View : 30

3.2.9 Location Constraint View : 31

3.2.10 Group View : 33

3.2.11 De�ne Menu View : 33

3.2.12 Default Relations View : 34

3.3 Generating an Application : 35

3.3.1 A Guide to the Generated Application Code : : : : : : : : : : : : : : 36

3.3.2 Creating Grid Base Applications : 40

3.3.3 Creating Dynamic Applications : 40

3.4 Finishing Touches : 41

3.4.1 Support for Additional Code : 41

3.4.2 Commonly Used Hooks : 43

4 Examples 47

4.1 Boolean Logic Circuit : 47

4.1.1 Modi�cations to BooleanCircuitView : : : : : : : : : : : : : : : : : : 51

4.2 WaterWorks : 53

4.3 Blocks : 56

ii

4.4 Turing Machine : 57

4.5 A Multi-Representation Application : 59

4.6 Guns and Bombs : 61

4.7 Another Multi-Representation Application : : : : : : : : : : : : : : : : : : : 63

4.8 A Visual Abstraction Hierarchy : 66

4.9 Example Gfx : 69

4.9.1 Bar Chart : 69

4.9.2 OneOfListGfx Example : 70

4.9.3 Widget Gfx Example : 71

4.9.4 Displaying tokens : 72

4.9.5 Using the OriginOf and AngleOf Elements : : : : : : : : : : : : : : : 72

5 Acknowledgments 75

iii

1 Introduction

The Escalante

1

system provides facilities to rapidly construct applications for visual lan-

guages that are based on graph models. Applications are developed by specifying a target

visual language using Escalante's visual speci�cation environment. From this speci�cation

language-speci�c software is generated and combined with preexisting Escalante software to

realize the target application. The resulting application incorporates a broad spectrum of fa-

cilities for handling the speci�ed language including the underlying language data structures

and a comprehensive editing module. The application can also be expanded by manually

embellishing the generated software to incorporate arbitrary functionality.

Visual languages within the domain of Escalante are characterized as graph models; how-

ever, this characterization is related more to the Escalante design principles than to one's

intuitive nature of the language-based applications that can be implemented using Escalante.

In general, Escalante is applicable to visual languages which are based on some notion of

\things" (elements) and \connections between things" (relations). This approach allows one

to cast a spectrum of languages as graph models, ranging from traditional graph models

such as directed graphs to computer games.

Escalante is an evolving system, yet it has already been used to construct a wide variety

of visual applications, some of which have essentially no manual embellishments and others

of which have substantial manual additions. This technical report is intended to explain the

principles that underly Escalante, to describe how the system implements the principles, and

to illustrate how Escalante can be used to implement a variety of aspects pertinent to visual

applications.

1.1 Basic System Architecture

Escalante is an object-oriented system composed of three components: a base language

module, a base editor module, and the GrandView language speci�cation editor. Figure 1

shows the development process and a conceptual view of the target application architecture.

Applications built using Escalante are composed of a language (or data) module and an

editor (or control) module. The language module encapsulates most of the language speci�c

functionality required within an application, including the application data model and its

representation. The editor module consists of a built-in editor model that o�ers a rich set of

interaction mechanisms and can be adapted by the language designer to support language

or application speci�c interaction techniques. We have taken a language-centered approach

for the principles underlying Escalante, meaning that visual applications are de�ned around

the underlying speci�cation of the visual language; as a consequence, the system tends to

focus on the language module rather than on the editor module (or other application-speci�c

modules that might be added manually).

The language and editor modules are made up of a prede�ned base component coupled

with generated and programmed language speci�c components. The prede�ned component

1

Environment for the Speci�cation and Construction of visuAl LANguage applicaTions and Editors

1

encapsulates general functionality and behavior of visual language applications. The gener-

ated component is created from a language speci�cation de�ned using GrandView; it adds

language-speci�c functionality. The programmed components of the language and editor

modules are created manually by the language application developer and are used to modify

or extend the capabilities and functionality of the application that are not addressed by the

language speci�cation. It has been our experience that complex visual language applications

can be created with minimal manual programming.

Predefined

Generated

Programmed

Predefined

Generated

Programmed

Application ArchitectureGrandView

Language Module Editor Module

Figure 1: System Architecture

The process of constructing a visual language application consists of creating the language-

speci�c editor and language modules using GrandView. The developer uses GrandView to

specify the constructs and characteristics of the target visual language, then code is gen-

erated that realizes the speci�cation. \Hooks" are provided to extend the functionality of

this generated code if that is desired (e.g., additional language-speci�c semantics, di�erent

interaction techniques, or di�erent look and feel). The generated editor module serves as a

template and provides the developer a rich framework that can be tailored to construct the

language-speci�c editor component.

The following section is a discussion of the underlying principles of Escalante including

the structure of the language and editor modules and the interaction between them. Section

3 discusses how GrandView and Escalante are used to produce a working visual application,

including a detailed description of the use of GrandView in the language speci�cation process.

The code that is generated by GrandView is described and the hooks that are provided to

incorporate additional language or application functionality are discussed. In Section 4 we

present an extensive set of visual application examples that have been built using Escalante.

It is intended to demonstrate the diverse domain of visual languages to which Escalante

is applicable, and to illustrate how Escalante can be used to realize these visual language

applications.

2

GraphObject

VGraphElement

VRelation

VEntity

Gfx

PtGfx

RectGfx

OvalGfx

TextGfx, ...

VObjGfx ButtonGfx, FieldGfx, TextViewGfx, ...

GfxSet RelGfxSet

RepGfxSet

Figure 2: Base Hierarchy

2 Principles

To provide coverage for a broad spectrum of visual languages, we have developed a conceptual

language characterization framework. The development of the language module has been

based on this framework; it is used to describe the constructs and characteristics that make up

the visual languages we address. It provides a very general view of graph model based visual

languages. In this section we discuss the overall structure of the language module and the

major points of the characterization framework that underly the module. We then describe

the editor architecture and the interactions between the editor and language modules.

2.1 Language Module

In Escalante we implement the constructs that make up a visual language as a collection

of static classes organized as a type hierarchy. A visual program is a collection of objects

instantiated from these classes. That is, the class hierarchy de�nes the language, while an

instantiation of objects de�nes a particular instance of that language. Figure 2 shows the

base language class hierarchy within Escalante. There are two groups of basic classes: visual

graph elements (VGraphElement) and graphic primitives (Gfx). The language developer

de�nes the speci�c constructs of a visual language by deriving classes from the base visual

graph element classes.

For example, Figure 3(a) shows the set of classes that are used to de�ne the constructs

of the Boolean Logic Circuit example shown in part (b) of the �gure. Instances of the

prede�ned graphics classes are used to specify the representation of the element. In the

case of the Boolean Logic Circuit example the images of the VGraphElement classes are

de�ned using instances of the BitmapGfx, ImageButtonGfx, PolyGfx, and TextGfx graphic

primitives.

3

GraphObject VGraphElement

VRelation Connection

VEntity

BaseElement

Gate

And,Or,Not

OnO�

(a)

(b)

Figure 3: Boolean Logic Circuit

2.1.1 Graph Objects

The GraphObject class is the root of the language class hierarchy. This class implements an

attribute value mapping mechanism to propagate attribute values from one object (source)

to the attributes of other objects (targets). One can place any number of attribute �lters

along the attribute mapping path. These �lters allow for the modi�cation of the values

and the control of the attribute mapping process by providing mathematical operations

(e.g., addition, division, log), simple control ow, (e.g., if(attribute < number)then), logical

operations (e.g., =; <;>), type conversions and access to other attribute values of the source

or target objects. The speci�c uses of this mechanism are discussed throughout this paper.

2.1.2 Elements and Relations

The core concept of the characterization framework (and the language module of Escalante)

is the way we characterize or describe the constructs which make up a visual language. In the

domain of graph model based visual languages, one encounters a wide variety of constructs

(e.g., node, edge, port, graph, subgraph, aggregation). Each of these constructs may have

its own particular characteristics and behavior. For example, a subgraph in a particular

language may be viewed and manipulated in particular ways. The elements of the subgraph

may be viewed in a separate window. The subgraph construct may be used as a visual

abstraction mechanism (i.e., the elements in the subgraph are not shown when the subgraph

4

E2E1

E3

R1

R2

Figure 4: Element/Relation Connectivity

is shown). On deletion of the subgraph construct, the elements of the subgraph may also be

deleted.

To provide explicit programmatic support for the diverse language constructs one may

encounter we distinguish between the constructs and their characteristics (or behavior). All

language speci�c constructs are generalized into a simpler form - elements and relations. An

element represents a thing within a language (e.g., node, graph, edge, subgraph, aggregation).

A relation is also an element (i.e., the relation construct is derived from the element construct)

that is explicitly able to represent an arbitrary connection between two elements.

2

An

instance of a relation is an object that connects two other elements, termed the tail and

head. (The tail and head may be null in some cases, suggesting that the relation may be

treated much like an element.) Figure 4 shows one representation of the connectivity of

elements and relations. We use this particular representation for discussion purposes only.

This graph could be thought of as G = fE1, E2, E3, R1(E1,E2), R2(R1, E3)g. The tail of

the relation R1 is the element E1. The head of R1 is the element E2. R1 is considered an

out relation of E1 and an in relation of E2. The connected elements of an element are the

elements that are the tail (head) element of in (out) relations of the element. For example,

element E2 is a connected (out) element of element E1. The tail or head of a relation can

be a relation. The tail of the relation R2 is the relation R1. Within a tail/relation/head

grouping there are six di�erent relationships or relation connections that exist: tail ! head,

tail ! relation, head ! tail, head ! relation, relation ! tail and relation ! head.

We use the element/relation characterization to make explicit and concrete the (possibly

implicit or abstract) constructs and relationships that occur within visual languages. For

example, in a visual language there may exist one element that spatially contains another

element. In Escalante this implicit relationship between the two elements would be made

explicit by a relation object. One of the characteristics of this relation would be to de�ne

the spatial constraint of containment between its tail and head elements. Another example

of abstract constructs is the concept of a graph (i.e., a collection of nodes and edges). In

Escalante a graph is an element; the implicit relationship that captures the notion of an

element being a member of a graph is made explicit by a concrete relation that connects

the graph element and the element which is the member of the graph (e.g., Figure 10). The

implicit member of relationship de�nes certain behavioral properties of the graph and the

2

The entity construct is used to disambiguate a relation from a construct that is not a relation.

5

member of the graph. For example, if one were to draw the graph this would imply the

drawing of the member of the graph. If one were to delete the graph this would imply the

deletion of the member of the graph. In Escalante the explicit member of relation concretely

de�nes these implicit behaviors.

The structure of a graph can be de�ned using elements and relations, but the the be-

havior must be de�ned using other mechanisms. We have generalized the functionality and

behavior one encounters in speci�c visual languages and applications, then encapsulated this

knowledge as general mechanisms in the element/relation constructs. Many of these mecha-

nisms can be de�ned within a relation and act with respect to one or more of the six relation

connections described above. These mechanisms include propagation of events, propaga-

tion of attribute values, visual dependencies, and spatial constraints. These mechanisms are

discussed in this and later sections.

Event Propagation Certain events (such as deletion, copying, and drawing), occur to

elements of a visual language within the context of an interactive application. When an

event occurs to an element it often causes other events to occur to related elements. For

example, the deletion of an element may cause the incident relations of the element to be

deleted. The deletion of a graph may cause the member of relations and the members of the

graph to also be deleted. The event propagation mechanism allows one to de�ne and control

this propagation of events. Relations contain ags associated with event/relation connection

pairs. The values of these ags determine the propagation of the events. In Figure 4, if one

were to desire that on deletion of element E1 the incident relation R1 should also be deleted

then one would de�ne within the relation that the \deletion event" be propagated from the

tail to the relation.

Relation Attribute Propagation One can make use of the attribute mapping mecha-

nism to de�ne mappings among the six relation connections. For example, one can de�ne

that changes to the width of the tail of a relation are propagated to the width of the head

of the relation.

2.1.3 Visual Graph Elements

The three classes, VGraphElement, VRelation, and VEntity make up the basic set of visual

element classes. These classes, in conjunction with the graphic primitives discussed below,

encapsulate the state and functionality related to representing constructs on the screen.

Elements of type VGraphElement have a screen position which is de�ned by two points,

P1 and P2, and a set of joint points. The VGraphElement attribute, theimage, contains a

set of graphics objects which provide the representation of the element. The position and

layout of these graphic objects are de�ned with respect to the points P1, P2 and the joint

points. The VEntity class is used to disambiguate visual elements that are derived from the

VRelation class from those that are not.

6

N1.lr > N2.lr

N3.ul = N1.ur

N1

N2

N1.ul < N2.ul

N3

Figure 5: Location Constraint

The VRelation class is derived from VGraphElement. By default this class positions its

points, P1 and P2, to the closest points on its tail and head element, respectively. This func-

tionality can be controlled so that the points P1 and P2 are independent of the tail and head.

3

A visual relation may exhibit any type of graphical representation that a VGraphElement

exhibits. It is not constrained to look like an edge.

Location Constraints Location constraints are used within visual relations to de�ne spa-

tial relationships between any of the relation connections described above, (e.g., tail and

head, head and relation) The position of a point of the target element is constrained to be

greater than, equal to, or less than a point from the source element. Figure 5 illustrates

the use of location constraints to de�ne containment and adjacency. To de�ne the spatial

relationship of containment two location constraints are used; the �rst de�nes that the upper

left corner of N1 is less than the upper left corner of N2.

4

The second constraint is based

on the lower right corner of N1 and N2. The spatial relationship of adjacency in Figure 5

is de�ned by constraining the upper left corner of the target node, N3, to be equal to the

upper right corner of N1.

2.1.4 Graphic Primitives

The graphical depiction of an element is de�ned using the set of graphics classes shown in

Figure 2. The Gfx class encapsulates graphics state such as color, �ll, and pen width. The

attribute mapping mechanism can be used to de�ne a mapping between attribute values

within a visual graph element and attribute values within the set of Gfx objects which form

the image of the element.

The VGraphElement class attribute, theimage (mentioned above), is a pointer to a GfxSet

object. The GfxSet class has a number of children Gfx objects. Figure 6 is an example of a

set of Gfx objects and the image the objects produce. The children of a GfxSet object may

3

Using the methods CalcHdPt(FALSE), CalcTlPt(FALSE).

4

The origin of the coordinate system is the upper left corner. Positive X axis is to the right. Positive Y

axis is down.

7

GfxSet RepGfxSet

GfxSet

RelGfxSet next.nw=prev.sw
cnt=3

next.sw = prev.ne
width=4

se=elt.se

nw=elt.nw

TextGfx
nw=elt.sw

TextGfx

sw=elt.ne
ne=elt.ne+(5,-5)

filled=true

"Label2"

"Label1"

Label1
Label2

Figure 6: Example Gfx Instance

inherit graphics state associated with the parent GfxSet. The children of a RelGfxSet object

are consecutively laid out with respect to one another. For example, in Figure 6 the two

TextGfx objects, Label1 and Label2 are laid out so that the Northwest corner of the Label2

object is equal to the Southwest corner of the Label1 object. The RepGfxSet object repeats

the display of its child Gfx object a certain number of times. In Figure 6 the OvalGfx object

is repeated three times.

The PtGfx classes provide the actual image that is shown on the screen. Included in this

set are classes for rectangle, oval, wedge, text, bitmap, and polygon. The size and position of

these objects are de�ned with respect to the VGraphElement attributes, P1, P2 and joints.

These points can be used directly as reference points or the bounding rectangle of the points,

P1 and P2, can be used (e.g., North, East, Center). The position of the rectangle object

in Figure 6 is de�ned using the Northwest and Southeast corners of the associated visual

element.

The VObjGfx classes provide the ability to create representations that respond to direct

user input. These classes include text �elds, buttons, text views, and menus. The attribute

mapping mechanism is used to de�ne the mapping between input values, (e.g., button click,

text, menu selection), and the attributes of the visual element associated with the Gfx object.

This type of graphical representation is useful in raising the level of user/system discourse.

One can directly manipulate the internal state of the language constructs in a modeless

manner.

8

Figure 7: Multiple Representation Example

2.1.5 Multiple Representations using Structural Graph Elements

Some visual language applications may consist of two or more distinct, yet related, sets of

visual elements (or visual graphs). Figure 7 shows an example of this multiple representation

functionality. This application is made up of two groups of visual elements. Each of the

visual elements in a window is related to visual elements in the other window. When adding

an element to the visual graph in one window, elements of the appropriate type are added

to the visual graph displayed in the other window. Likewise, when deleting a visual element

the corresponding element in the other graph is also deleted. The set of corresponding

visual relations connect corresponding elements. For example, the relation of type Hierarchy

between the elements labeled N1 and N4 in the right window corresponds to a relation of

type Contained between the elements labeled N1 and N4 in the left window.

To implement multiple program representations there must be some way of associating

two or more distinct sets of visual elements. This association must be in terms of the overall

structure of the graph (i.e., elements, relations, connectivity) and the internal attribute state

of related individual visual elements (e.g., labels). To associate visual elements, Escalante

provides a set of structural element classes (Figure 8). These classes, SGraphElement, SRe-

lation and SEntity, mirror much of the basic functionality of their respective visual element

classes. This common functionality includes basic element/relation connectivity, event prop-

agation and attribute mapping. However, they di�er from the visual element classes in that

there is no functionality pertaining to the visual representation of the element. Rather, in-

stances of structural element classes contain a list of their related visual graph elements and

provide a common point through which the visual graph elements are related (e.g., Figure

11). The VGraphElement class contains a pointer to its structural element.

The 1:n relationship between structural and visual elements provides a simple and regular

way in which multiple representation applications are built, allowing for a wide variety of

approaches in its use. One could de�ne a language initially as a set of structural elements and

then de�ne a set of visual elements to arrive at a representation of the structural elements.

One could add a set of structural elements to a previously de�ned set of visual elements in

order to realize a di�erent representation of the original visual elements.

9

GraphObject SGraphElement

SRelation

SEntity

Figure 8: Structural Element Classes

GraphObject

SGraphElement

SRelation
SR

SEntity

SN

VGraphElement

VRelation BaseRelation

Contained

Hierarchy

Edge

VEntity

Circle

Square

Figure 9: Multiple Representation Class Hierarchy

In the example shown in Figure 7, the left window is made up of visual entities of type

Square, Circle and visual relations of type Contained and Edge. In the right window there

are Square entities and Hierarchy relations. When adding an element of type Square to the

graph in one window, an element of type Square is also created and added to the graph

in the other window. When a relation of type Contained is added in the left window, a

relation of type Hierarchy is created and added to the graph in the right window. Elements

of type Circle and Edge in the left window have no corresponding elements in the right

window. Instances of the structural element types SN and SR are used to relate the Square,

Contained, and Hierarchy visual elements together. Figure 9 shows the hierarchical structure

of these classes. Further examples of the use of multiple representations are given in Section

4.5 and 4.7.

The attribute mapping mechanism discussed in Section 2.1.1 is used to bidirectionally

map attribute values between structural and visual elements. In the application in Figure 7,

the Square visual class and the SN structural class, both have a character string attribute

label. An attribute mapping is de�ned between each Square element and its corresponding

SN element. Changes to the label attribute (e.g., through the TextFieldGfx) in a Square

element are propagated to the label attribute of SN. This change is then propagated to the

other visual elements associated with the SN element.

2.2 Editor Module

Figure 10 shows a conceptual view of the objects and classes that make up the editor com-

ponent. The EscalanteManager object contains a set of EscalanteDocument objects. In turn

10

EscalanteDocument

EscalanteView

EscalanteDocument

EscalanteView

EscalanteDocument

EscalanteManager

EscalanteView

...

vgraph vgraph vgraph

Editor Module

Language Module

Figure 10: Editor Architecture

these document objects each contain an EscalanteView object.

5

A globally de�ned variable,

gEscalanteManager is used to access this hierarchy of objects. Section 4.6 describes an ex-

ample application that uses the gEscalanteManager to access all documents and all views of

an application.

Much of the base editor functionality is encapsulated within the EscalanteView class.

This class has an attribute, vgraph, which is a pointer to a VGraphElement object. It is

through this element that the editor accesses and manipulates the graph as a whole. The

EscalanteView class encapsulates a wide range of visual program editing capabilities includ-

ing: the creation, deletion, and copying of language elements; graphical editing capabilities

such as moving, resizing, scaling, alignment and simple layout; and grouping and manipu-

lating groups of elements. There is a framework provided for creating online help. N-level

undo/redo of element creation, deletion and movement is supported. One can copy/paste

and export/import components of a graph. Very exible mechanisms also exist for multiple

views, viewing subgraphs and �ltering out the display and selection of elements.

5

An application would have application-speci�c Manager, Document, and View classes derived from these

base classes.

11

...

(Sq.1, Sq.2, ..., Hi.1, Hi.2, ...)(Sq.1, Sq.2, ..., Co.1, Co.2, ..., Ci.1, Ci.2, Ed.1, ...)

(SN.1, SN.2, ... ,SR.1, SR.2,...)

Views:

Elements:

Elements:

Visual

Structural

Figure 11: Editor/Language Con�guration

2.3 Editor/Language Con�guration

Escalante supports multiple model representations and multiple windows or views of those

representations. The overall architecture is very exible in how a system of structural ele-

ments, visual elements, and views is con�gured. Figure 11 shows one particular application

con�guration. (This example is the same as the one used in Figure 7.) The elements of the

structural graph are related to two sets of visual elements (i.e., two visual graphs). The set

of visual elements on the left are displayed in two separate views. The set of visual elements

on the right are displayed in one view.

During a run of an application, one may dynamically create any number of views (using

the View/Views/New View menu command). For example, in Figure 11 the set of visual

elements on the left are displayed in two views. Likewise one can dynamically copy a set

of visual elements, maintaining the connection to the underlying structural elements (Using

the View/Views/Copy Graph menu command). A new view is created for this new visual

graph. One can have any number of visual graphs associated with a common structural

graph. Those visual graphs may be made up of elements of the same type or of di�erent

types. The elements of a visual graph may or may not have corresponding elements in the

structural graph. Likewise, the elements of the structural graph may not have corresponding

elements in a visual graph. It is not necessary to use a structural graph. There can be any

number of views in which a visual graph is accessed and displayed. These views may display

the visual graph as a whole or components of the visual graph. A view may de�ne certain

�lters which control what elements are displayed.

12

3 Creating a Visual Language Application

The principles that underly the design of Escalante have been explained in Section 2; in

this section we focus on how to use Escalante to build a visual application. First, note that

Escalante is intended to be used for a spectrum of visual applications ranging from simple

to complex ones; any speci�c application is not likely to use all aspects of the system as they

are described in Section 2. That is, the system has been designed with the intent that simple

visual applications be relatively easy to build, and so that increasingly complex applications

use increasingly sophisticated aspects in Escalante; for example, it is not necessary to un-

derstand the principles behind multiple program representations unless one intends to build

an application that uses them.

The principal tool used to create a visual language application is the GrandView speci-

�cation environment and its concomitant visual language Grand. Through GrandView one

de�nes the target visual language using Grand constructs and generates the C++ code that

realizes the language module. We have taken a language-centered approach in the devel-

opment of Escalante. We provide, through GrandView, extensive support in de�ning and

constructing the language module (i.e., the data model) with less speci�c support in the con-

struction of the editor module (i.e., the control model). GrandView produces a template of

the target editor module and provides limited support in tailoring the target editor module

(e.g., menu de�nition).

There are three steps in creating a visual application with Escalante: �rst, one must

create a Grand speci�cation of the target visual language using GrandView; second, through

GrandView the generated editor and language modules are created; �nally, application-

speci�c functionality can be manually added by extending the generated editor and language

modules. The following subsections provide a detailed description of each of these steps.

Section 4 illustrates each of the concepts described in this section with detailed examples of

visual applications that have been built using Escalante.

It is di�cult to describe the complete human-computer interface for any visual applica-

tion, e.g., GrandView. In the remainder of this technical report, we assume that the reader

has a copy of Escalante; the reader is strongly encouraged to use GrandView to explore the

concepts and to provide the inevitably missing context for many of the explanations.

3.1 ET++

Escalante is built using the ET++ application framework toolkit [1]. ET++ provides an

extensive class hierarchy that encapsulates: a multi platform user interface toolkit; an ex-

tensive set of collection classes (e.g., lists, dictionaries, sets); a meta-class class; and support

for arbitrary object I/O. Escalante has been developed so that one can build visual language

applications with little knowledge of ET++. However, there are some aspects of ET++ that

are important to understand including the meta-class class Class and the ETRC resource

�le.

13

The meta-class class (called Class) contains information about other classes. To make use

of Class one places theMetaDef(Class Name)macro in a class de�nition and the NewMetaImpl(

Class Name, Parent Class Name) macro in the source �le of the class. These macros create

an instance of the meta-class Class for the de�ned class. The methods Class* IsA() and bool

IsKindOf(Some Class Name) are created by these macros and are used to determine the

class of the de�ned class and whether the de�ned class is derived from Some Class Name.

The Meta macro is used to access the instance of the Class class for a particular class (e.g.,

Class * c = Meta(Some Class Name))

ET++ supports the speci�cation of resource values using the resource �le ETRC. In the

ETRC �le there are resources de�ned for both ET++ and Escalante. Using this one can

change the look and feel of the interface. This includes the scroll bars of the view, palette

structure and layout, creating palettes in separate windows and the creation of menus. One

can add their own application speci�c resources to the ETRC �le.

3.2 GrandView Overview

GrandView is a visual language environment for specifying and generating the language

speci�c module of a visual application. Escalante encapsulates the prede�ned language

module in a C++ class hierarchy. A particular visual language is de�ned as a set of classes

derived from the prede�ned class hierarchy. An application is built by combining the resulting

language classes, the language speci�c editor module and the base modules provided within

Escalante. Since Grand is a visual language, this process is itself an instance of visual (meta)

programming. The human-computer interface is based on views that represent the various

aspects of the Grand speci�cation, and menus to invoke operations on that state.

Views. Users interact with GrandView through a set of views of a speci�cation. The

fundamental views within GrandView are the Class View (Subsection 3.2.1) and the the

Prototype View (Subsection 3.2.2).

GrandView supports many other views of the Grand speci�cation, depending on the

aspect of the speci�cation on which the designer focuses at any given time. The Change

View menu in the Class View invokes alternate views that support the de�nition of various

characteristics and behavior of the selected class speci�cation; Figure 12 lists the alternative

views, the functionality within each view, and the type of class speci�cation object required

for that view. Each of the views will be described in more detail in the remainder of the

section.

Menus. Menus are the primary mechanism for invoking operations on the speci�cation;

GrandView provides the GrandView, Change View, Show/Hide, and Gfx State menus among

others. The GrandView menu contains entries to prototype a speci�cation and to generate

the visual application software. The Change View menu is used to invoke alternate views

from the Class View, depending on element selection in the Class View. In alternate views,

a Change View command changes the view for the current element. The Show/Hide menu

14

View Functionality Type

Class De�ne language class construct hierarchy

Attribute Class attributes All

Gfx Graphical representation of a class Visual elements

Event Event mapping Relations

Relation attr map Attribute maps in relations Relations

Check tail/head Legal tail/head combinations for relations Relations

S � V attr map Attribute mapping between visual and All

structural elements

Location constraint Spatial constraints within a relation Visual relation

Group Grouping of incident relations or elements All

De�ne menu De�ne menu entries None

Default relations De�ne default relations None

Figure 12: GrandView Views

turns the visibility on or o� for various components of an element's image. Using this menu,

it is also possible to control the visibility of components in a subtree (e.g, Child Of relations

in the ClassView). The middle mouse button turns o� the visibility and left mouse button

turns on the visibility. Depressing the shift key while turning on the visibility of a subtree

causes only one level of the tree to become visible. The Gfx State menu lets one de�ne

graphics state of GfxSpec elements in the GfxView.

GrandView also makes use of default menus and commands provided by the base editor

module. These include the File, View, Delete and Edit menus. The File menu contains

commands for: loading and saving a speci�cation; printing the screen; and exiting Grand-

View. The View menu contains commands that enable one to change various aspects of the

view. The View/Views menu allow one to create new views or windows of a speci�cation.

Using the View/Flags menu one can set ags that control certain aspects of the interaction

mechanisms. For example, in GrandView turn the Move Hints ag on. This causes the prop-

agation of the movement of an element to other elements in various views in Grandview.

The Delete menu allows one to delete individual elements, elements in the selected group or

all elements. The Edit menu contains commands that support copying, moving, reshaping

and picking elements. One can also change the size and position of individual Gfx primitives

with the Edit/Gfx menu. The Edit/Align menu lets one layout the elements of the selected

group in various ways.

Help. Much of the information in this section is available as online help in GrandView.

Use the help menu within the context in which assistance is required.

3.2.1 Class View

The default view of a speci�cation is the Class View (see Figure 13). There are four class

speci�cation elements: Visual Entity, Visual Relation, Structural Entity, and Structural Re-

15

Figure 13: Class View

lation used in this view. Each of these class speci�cation elements contains a TextField that

allows one to set the name of the class. The Visual Entity and Visual Relation speci�cation

elements have a detailed image, accessed through the Show/Hide menu, which allows one to

de�ne the initial size of the element. The Child Of relation is used to construct a hierarchy

of the class speci�cation elements. Only legal connections of class speci�cation elements

are allowed with the ChildOf relation. The hierarchy de�ned with the ChildOf relation is

reected in the generated C++ code. By default, if a class speci�cation has no parent class

speci�cation it is derived from one of the base classes: VEntity, VRelation, SEntity, or

SRelation.

Figure 13 is the Class View of the Boolean Circuit example discussed in Section 2. In

this example, all entities are derived from BaseElement which, by default, is derived from

VEntity. The Gate and OnO� classes are derived from the BaseElement class. The AndGate,

OrGate, and NotGate are subclasses of Gate. The Connection class is, by default, derived

from the VRelation class. Most of the examples in Section 4 provide a discussion about their

Class View speci�cations.

3.2.2 Prototype View

A prototype approximates the behavior of a speci�ed language construct. Prototypes di�er

from the actual realization of the generated language construct in that certain aspects of

the speci�cation are not implemented in the prototype even though they would be provided

in the generated program. The Prototype View window allows the user to see the results

of an evolving class speci�cation, including approximate behavior, prior to generating the

C++ visual application. Prototypes are added to the prototype view using the Add proto-

type option in the GrandView menu. The Clear prototypes menu entry empties the list of

prototypes in the palette of the Prototype View. Much of a speci�cation can be prototyped,

16

including class structure (i.e. inheritance), attributes, graphics, attribute mapping, event

mapping and location constraints. However, it is not possible to prototype speci�ed func-

tionality that makes use of object type, (e.g., Check tail/head, Grouping). Speci�cations of

structural elements cannot be prototyped (e.g., structural classes, S�V attribute mapping).

Figure 14: Attribute View

3.2.3 Attribute View

The Attribute View is used to inspect, modify, and add attributes to any class speci�cation.

An attribute can be an integer, character, boolean, oating point, or ag variable (i.e., a 1

bit boolean variable). An attribute speci�cation consists of a name, default value, a C++

protection class (one of public, private, or protected), and pre and post functions. The

pre function acts as a a precondition when setting the value of an attribute. The pre �eld

is taken to be the name of a boolean function that is used to determine whether or not the

value of an attribute is set. If de�ned, the pre function is called before the attribute is set.

The post �eld is also taken to be the name of a procedure. If de�ned, the post function is

called after the value has been set. The pre and post functions allow one to tap into the

default control and data ow among a set of objects. One can insert user de�ned procedures

into this prede�ned control ow. The signature of the pre and post functions are:

bool pre(GraphObject * ptr, int attribute_id, data_type input_arg);

bool post(GraphObject * ptr, int attribute_id, data_type attr);

The ptr parameter is the pointer to the element. The attribute id parameter is the unique

identi�er for the attribute. Escalante uses the macro ATTRID(class name, attr name) to

access the unique attribute identi�er. The pre function takes the input argument that the

17

attribute is to be set to. The post function takes the actual attribute. These two parameters

can also be de�ned as aliases (i.e., data type & input arg).

The Text Include element is used to manually include raw text in the generated .h and

.C �les. The Menu at the lower left corner of the Text Include element determines where

the raw text is placed in the generated code. It can be in the class de�nition, in the .h �le

or in the .C �le (we discuss this feature in more detail in Section 3.4.1).

Figure 14 shows the Attribute View for an example class Node. The attributes speci�ed

are an integer attribute, x, and a character string attribute, str. The default value of x is

1. A pre function, CheckX(), has been speci�ed for the attribute x. The character string

attribute, str, is a protected attribute and has a default value derived from a call to some

method, GetStr(). It should be noted that the value of �elds that specify some value that in

the generated code will be taken as a text string is written out in quotes. To write out text

unquoted the �rst character in the �eld should be a n. This is the case with the dt �eld of

the CharAttr element.

Two Text Include elements are used to include raw text into the generated code. The �rst

causes the inclusion of \#include \SomeExtraFile.h"" in the generated .h �le of the class

Node. The second Text Include speci�cation causes the inclusion of new method de�nitions,

void SomeExtraMethod(); and char* GetStr();, in the generated class de�nition of Node. See

the Boolean Circuit example in Section 4.1 for a further example of the use of the Attribute

View.

3.2.4 Gfx View

The graphics to be associated with a class can be added using the Gfx View. GrandView

supports the speci�cation of both basic graphical shapes (e.g., rectangle, line, bitmap) and

various types of widgets that support direct manipulation of the internal state of an el-

ement. These elements are used together with grouping, positional, state, and attribute

mapping elements to de�ne a desired graphical outcome. Relations are used to establish a

correspondence between the various speci�cation elements.

The Gfx View, shown in Figure 15

6

, is made of a set of GfxSpec elements that lets

one de�ne images and groupings of images. There is also a set of elements that lets one

de�ne characteristics of the Gfx objects (e.g. text state and position). Each of the GfxSpec

elements consists of a bitmap that represents the type of Gfx. Some of the elements also

show a rectangle which represents simple graphic state of the element (pen width, �ll, pen

color, and �ll color). This can be changed using the GfxState menu. The GfxSpec elements

also have a detailed image and a GfxBase image. The visibility of the detailed and the

GfxBase image can be controlled through the Show/Hide menu (left mouse button to show

and the middle mouse button to hide).

The GfxBase image of a GfxSpec consists of a Trans: menu, Id: �eld, and Border, Shown,

Attachable and Pickable buttons. The use of the Trans menu is deferred to the discussion for

de�ning Gfx locations. The Id �eld is used to de�ne an integer identi�er for the Gfx object.

6

The two column layout of the palette is speci�ed in the ETRC �le.

18

Figure 15: Location Points Speci�cation

19

Figure 16: Result Gfx

Using this identi�er one can access a speci�c Gfx object from its element. When the Border

button is true, it indicates that the bounding rectangle of this Gfx object is drawn. The

Shown button determines whether this Gfx is initially shown or not. The Attachable button

determines whether a relation can be attached to this Gfx. The Pickable button determines

whether this Gfx can be used when picking the element.

The relations GfxOf and RelGfxOf are used to relate Gfx objects (the latter also allows

ordering of elements of a Relative Gfx Set).

De�ning the Gfx Location. As discussed in Section 2.1.4, the position of a Gfx object

is de�ned by a set of location points derived from the VGraphElement associated with the

Gfx object. The available VGraphElement points are the points, P1 and P2, the bounding

rectangle of P1 and P2 (e.g. NW, SE, Center), the joint points and the points of the refrect

(e.g., Ref Rect N, Ref Rect SW) which is discussed in Section 3.2.9. For the case of the Gfx

for a visual relation, one can also use the points of the tail and head to de�ne the image of

the relation. Most Gfx objects, (e.g. rectangle, oval, and widgets) require two points that

de�ne a rectangle in which the Gfx object is displayed. The TextGfx object requires one

point, the upper left corner of the text. The PolyGfx object requires n points.

GrandView provides default location points for the Gfx objects. One can use the Location

Point element in the Gfx View to override these defaults. When adding a Location Point

element, a relation of type GfxOf is automatically added to the nearest Gfx element (if one

is found). A Gfx object can be directly related to a Location Point with the GfxOf relation

from the palette.

Figure 15 shows a set of GfxSpec elements with a set of Location Point speci�cations.

Figure 16 shows the resulting graphical image. A Location Point speci�cation consists of

the particular Gfx point being speci�ed (e.g., Pt: pt1, Pt:pt2). The LP1 �eld de�nes what

point is used from the VGraphElement, (e.g., P1, NW, J1). The X and Y �elds are o�sets

from that point. The LP2 �eld lets one de�ne a second point from the VGraphElement.

This point is used in conjunction with the D: �eld (�xed distance along line) and the %:

�eld (percentage along line) so that the result point is derived by the following pseudo code:

20

if(LP2 != LPNull){ //If LP2 has been specified

if (percent != 0.0) //If % not 0

//point = percent along line (LP1,LP2)

result point = percent*(LP1->LP2) + Point(x,y);

else

//point = distance, D, along line (LP1,LP2)

result point = D(LP1->LP2) + Point(x,y);

}

else //LP2 has not been specified

result point = LP1 + Point(x,y);

As shown in Figures 15 and 16 the Rectangle Gfx has no connected Location Points so it

makes use of the default location points of (NW,SE). The Oval Gfx points are de�ned to be

(Center, SE). The point for the Text Gfx is de�ned as NW+(5,0). The Line Gfx goes from

the Center to 200%(Center, NW). The Slider Gfx makes use of the TRANSLP point. When

set, this Location Point de�nes a point to which the Trans: point of the bounding box of the

Gfx (from the GfxBase image) is translated. The Trans: point can be one of N, NE, E, SE,

S, SW, W, NW and CTR. In the case of the Slider Gfx the default Location Points are used

to determine its size. Once the size is determined, the SliderGfx is translated so that the N

point of the Gfx bounding box of the Slider Gfx is set to the S point of the VGraphElement.

One can use the OriginOf and AngleOf elements in the GfxView to de�ne a rotated

coordinate system. This is useful for creating di�erent styles of arrowheads. In Section 4.9.5

we discuss the use of these elements.

(a) (b)

Figure 17: Relative Gfx Set

Gfx Set, Relative Gfx Set, and Repeating Gfx Set are used to create groups of Gfx objects

which can inherit state de�ned in a parent GfxSet and allow for the control of the visibility

of a group of Gfx objects. Children Gfx of a Gfx Set inherit any state (e.g. visibility and

pen width) de�ned in the parent GfxSet and not de�ned in the child Gfx. The Relative Gfx

Set enforces an ordering for the layout of the consecutive children Gfx. The detailed image

21

of this element contains a source point menu (S:), a target point menu (T:) and an o�set

speci�cation (X:,Y:). The RelGfxOf relation is used to provide an ordering of the layout of

the children Gfx. The Relative Gfx Set lays out the �rst child Gfx at the location speci�ed

for the Gfx. Successive children Gfx are laid out with respect to the previous child Gfx. The

target point speci�es a point on the bounding box of the current Gfx that is set equal to the

source point of the bounding box of the previous Gfx (plus the o�set). The Repeating Gfx

Set repeats a single child Gfx a speci�ed number of times. It lays out these repeated Gfx in

the manner of the Relative Gfx Set. See Section 4.9.4 for an example using a Repeating Gfx

Set.

Figure 17a shows a Gfx speci�cation that consists of a set of RelGfxSet, Text, TextField

and Button elements. These are grouped together with the RelGfxOf relation. The RelGfxOf

relation has an integer �eld that allows one to de�ne the layout order of the connected

elements of the RelGfxSet speci�cation element. The head of the RelGfxOf relation with

layout order = 1 is taken to be the �rst Gfx. The location of this Gfx is de�ned as usual. All

successive Gfx of a RelGfxSet are laid out with respect to the �rst Gfx. Figure 17b shows

the result of this speci�cation. The Border has been turned on for the two lower Relative

Gfx Sets using the Border button of the Gfx Base image. The TextGfx, \Label:" and the

TextFieldGfx are members of a RelGfxSet that lays out its members West = East. The

\Text:" TextGfx, TextFieldGfx, and ButtonGfx are members of a di�erent RelGfxSet that

lays out its members West = East + (10,0). These two RelGfxSets are themselves members

of a third RelGfxSet that lays out its members NW = SW + (0,10).

Gfx Attribute Mapping. Figure 18 shows an example Gfx speci�cation that makes use

of theGfxAttrMap and GfxAttrFilter elements. One can de�ne an attribute mapping between

a visual element and the Gfx objects that make up the image of the element using these

elements. When adding these elements they will both be connected by a GfxOf relation to

the nearest GfxSpec element found. If none are found then they will created without the

GfxOf relation. One can then manually connect them with the GfxOf relation.

The Gfx Attr Map element consist of a direction menu, a Gfx Attr menu and element class

and attribute �elds. The direction menu lets one de�ne the direction of the mapping (i.e.,

element to Gfx, Gfx to element, bidirectional). Figure 19 lists the available Gfx attributes.

The element class and attribute �elds lets one de�ne the class name and attribute name of

the element. This can either be a user de�ned attribute from the Attribute View or one of a

set of prede�ned element attributes as shown in Figure 20. To make use of these prede�ned

element attributes, one needs to de�ne the attribute name �eld using those names shown in

Figure 20. The class name �eld can either be as shown, or the shortcut names, GO and VG

can be used respectively for GraphObject and VGraphElement.

The Gfx Attr Filter speci�cation element consists of an operation and a data �eld. Any

number of �lters can be concatenated together. Initially each �lter takes the value of the

source attribute and applies the prescribed operation to the attribute with the value speci�ed

in the data �eld used for binary operations. The result value is passed to the next �lter which

in turn applies its operation, etc. The operations available include simple mathematical and

22

(a)

(b)

Figure 18: Gfx/Element Attribute Mapping

23

Gfx Attribute Description

Value Value of �elds, views, buttons, etc.

Label The label of a button. The text entry of a menu. etc.

Shown Is this Gfx object shown.

Not Shown Inverse of Shown.

Outline Do we draw an outline around this Gfx .

Pen Width The width of any line.

Filled Is this Gfx �lled.

Pen color,Fill color What color (integer, colors de�ned in

src/gfx/CommonGfx.h).

Pen color map,Fill color map You can use the gColorMap to map from

integer to speci�c color.

Pen grey, Fill grey What level of grey scale do we use (oat).

Text grey, Text font

Text size, Text color,Text color map Various text states

Text face Doesn't really work.

Width The width of the Gfx (if applicable).

Width left, Width right When changed the Gfx moves left (right).

Height, Height up, Height down Just like width.

Area Only Gfx to Element.

Slider value The current value of the slider.

Slider min, Slider max Lower and upper bounds of the slider.

Slider percent What percent is the slider value between the

lower and upper.

Lp1 perc, Lp2 perc The percent factor for the location point.

Lp1 dist,Lp2 dist The distance factor for the location point.

RepGfx::howmany How many of the child gfx are shown.

RepGfx::maxreps Maximum number of child gfx shown.

BitmapGfx::�lename Bitmap �le name.

WedgeGfx::start Where does a wedge start.

WedgeGfx::length How much of the wedge is shown.

Figure 19: Gfx Attributes

24

logical operations (e.g., addition, log, not). Some operations let one de�ne primitive control

ow, passing on values or aborting the mapping depending on the operation. One can also

refer to the value of the target attribute (e.g., if(target.attr > attr) then attr).

One can also set future data references to be the target attribute with the future data

= target.attr operation or the source attribute with the future data = attr operation. This

overrides any later data settings and uses the speci�ed value as the new data setting. One

can then clear this setting of future data references with the clear future data operation.

One can also set the future data or the attr value with other attribute values from the

source and target object. This is accomplished with the data = target.attr(data), data =

source.attr(data), attr = target.attr(data) and attr = source.attr(data) operations. This

functionality cannot be prototyped in the current version of GrandView. The data value is

taken to be an integer value which is the identi�cation of the desired attribute. From the

speci�cation editor it is best to use the from ATTRID(class name, attribute name) as the

data �eld.

One can de�ne their own attribute �lters using the cUserDe�ned[1-10] operation speci�-

cation. See Section 3.4.2 for more details on user de�ned attribute �lters.

Figure 18a shows a speci�cation of a set of Gfx objects for an element with integer

attribute x. Figure 18b shows the result of the speci�cation. This image consists of (from left

to right) an IntFieldGfx, IncDecGfx, RectGfx and OvalGfx. The value of the IntFieldGfx

is bidirectionally mapped to the attribute x. When one types into the �eld that value is

mapped to the attribute x. Changes to the attribute x are mapped to the value displayed

by the �eld. The value of attribute x is mapped through a multiply by 2 �lter to the value

displayed by the IncDecGfx object. The value of the IncDecGfx is mapped through a divide

by 2 �lter to x. The attribute x is mapped to the penwidth attribute of the RectGfx and is

also mapped through a mod by 2 �lter to the �lled attribute of the OvalGfx. As shown in

the �gure the current value of x is 3. The value displayed by the IncDecGfx object is 3 (i.e.,

2 * x). The pen width of the RectGfx is 3. The Ovalgfx is �lled because x modulo 2 = 1.

3.2.5 Event View

The Event View is used to de�ne event propagation among relations as discussed in Section

2.1.2. For example, we might want a relation to die (or be removed), whenever the tail of

that relation dies. The user speci�es an event type, direction for propagation, and state.

Figure 21 describes a few event propagation examples: the �rst (Die) speci�es that when

the tail of the relation dies the relation also dies; the second (Move by) states that when the

relation is moved, the head of the relation is also moved (events can go from a relation to

the tail or head); the third (Die hint) states that when the global ag, gDoDieHints, is true

on the death of the tail the head also dies. Hint ags can be set through the View/Flags

menu. Figure 22 lists the events supported in the current Escalante release. During the run

of an application one can directly set or check the value of an event propagation ag using

the following methods:

bool GetEventDep(Events event, DepTypes deptype);

25

Class Attribute Access Type Description

GraphObject this r GraphObject* Ptr to the object

GraphObject id rw int Id of the object

GraphObject existence rw bool On write this kills the element

GraphObject ClassName r char* classname

VGraphElement name rw char* name attribute

VGraphElement shown rw bool Is this element visible?

VGraphElement p1 w Point

VGraphElement p2 w Point

VGraphElement angle rw double The angle the points p1 and p2 make

VGraphElement west rw int X coordinate of bbox west side

VGraphElement north rw int Y coordinate of bbox north side

VGraphElement east rw int X coordinate of bbox east side

VGraphElement south rw int Y coordinate of bbox south side

VGraphElement area r int area of bbox

VGraphElement height rw int height of bbox

VGraphElement width rw int width of bbox

VGraphElement length r double distance(p1, p2)

VGraphElement originx w

VGraphElement originy w

VGraphElement doriginx w

VGraphElement doriginy w int Taken as a delta, not as an absolute pt.

SGraphElement name rw char* name attribute

Figure 20: Prede�ned Element Attributes

Figure 21: Event Speci�cation

26

void SetEventDep(Events event, DepTypes deptype, bool value);

Where the event and deptype are one of those listed in src/gm/CommonElt.h. See Section

4.8 for an example of using these methods.

3.2.6 Relation Attribute Map View

The Relation Attribute Map View allows the user to de�ne attribute mappings between the

six element pairs of relation connections (i.e., (tail! head),(tail! rel), (head! tail), (head

!rel), (rel ! tail), and (rel ! head)). In addition, an attribute value can be �ltered (as

discussed in Section 3.2.4).

Figure 23 is an example of the Relation Attribute Map View. The Relation Attr Map

element de�nes the direction of the mapping and the attributes to be mapped. The Attr

Filter element de�nes a function to be applied to an attribute (in the funcId �eld) and data

to be used by the function (in the data �eld). The attribute �lter mechanism is described in

more detail in Section 3.2.4. The Filter Of relation is used to associate �lters with Relation

Attribute Maps. One uses the FilterOf relation to add an Attr Filter to a Relation Attr Map

and to connect consecutive �lters together.

In this example the relation Edge maps the attribute Node::x from the tail to the head

of the relation. An attribute �lter is de�ned that adds 1 to this value. The Filter Of relation

de�nes a location constraint that causes the Attr Filter to be positioned under the Relation

Attr Map. See Section 4.1 for further examples of the use of the relation attribute mapping

functionality.

3.2.7 Check Tail/Head View

The Check Tail/Head View allows the user to specify the possible legal head and tail elements

of a relation. This is accomplished by de�ning a set of boolean expressions graphically. The

speci�cation produces a method in the generated code that is invoked whenever the head or

tail of a relation is about to be set.

The speci�cation shown in Figure 24 is for the Connection relation of the BooleanCircuit

editor described in 4.1. The BoolSet element de�nes the operators for an expression (these

are and and or with negation). The BoolOf relation is used to structure an expression as

a tree. The result value of a BoolSet speci�cation is the operator applied to the result

value of each of the connected elements of the BoolSet element. The EltIsKindOf element

consists of a negation �eld, a class �eld and a position �eld (i.e., tail or head). The result of a

EltIsKindOf speci�cation is negation(position.IsKindOf(class)), (e.g., !tail.IsKindOf(Node)).

The TlHdFunc element allows the user to specify a boolean function to be applied to the

prospective tail or head. For a potential tail/head pair to be legal they must satisfy each of

the subtrees de�ned in the view. The speci�cation shown in Figure 24 de�nes that the tail

of the Connection must be derived from the BaseElement class. The head of the relation

must be derived from the Gate class. Or:

(tail->IsKindOf(BaseElement))&&(head->IsKindOf(Gate))

27

Event Functionality

Die When the element dies do others die.

Die hint When the element dies others also die if the ag,

gDoDieHints, is true.

Copy When an element is copied(cloned) are others copied.

Copy hint When an element is copied(cloned) others are copied

if the ag, gDoCopyHints, is true.

MoveBy When an element is moved are others moved.

MoveBy hint When an element is moved others are moved if the ag,

gDoMoveHints, is true. (See GfxView in GrandView).

Reshape When an element is reshaped are others reshaped.

Scale When an element is scales are others scaled.

Scale hint When an element is scaled others are scaled if the ag,

gDoScaleHints, is true.

Add Element When an element is added to this element through the

AddElement method is that element added to other elements.

Draw Does an element draw other elements when drawn.

Signal Image Change When the image or position of an

element changes are other elements noti�ed.

Moved When an element moves are other elements told of the movement.

IBBox Reference What elements does this element's reference

bounding box contain. (See Section 3.2.9)

(Note: One should also set the Moved event in

the reverse direction the the IBBox Reference event is set).

End Point Reference When an element's visibility is turned

o� where do the incident relations of the element connect to (if at all).

(e.g., Section 4.8)

Shown Dependency When an element is turned o� does this

force other elements to be turned o�.

Shown Flag This is not an event propagation. Rather it is a way to

control the visibility of elements. e.g. if tail to head (or rel to head)

of the shown ag is false then the head of the relation is not shown.

(e.g., Section 4.8)

Event Set Visible When an element is turned o� are other elements also turned o�.

Figure 22: Events

28

Figure 23: Relation Attr Map View

Figure 24: Check Tail/Head View

29

3.2.8 S � V Attribute Map View

The S � V Attribute Map View allows the user to de�ne attribute mappings between struc-

tural and visual elements. This feature allows attribute mappings between the elements that

make up multiple language representations. Figure 25 shows two attribute map speci�ca-

tions. A speci�cation consists of a direction; visual class and attribute name; and structural

class and attribute name. In the �gure, the �rst speci�cation de�nes a mapping from the

SN::y attribute of the structural element to the VN::x attribute of the visual element. Also

there is a bidirectional mapping de�ned between attributes SN::z and VN::z. If this view

was for a structural class, than the SN::y to VN::x mapping would be added between the

structural element and all visual elements associated with the structural element. If this

view were for a visual class then the mapping would be added to the set of maps of the

structural element by the visual element. This mapping would only be between the current

visual element and its corresponding structural element. See Sections 4.5 and 4.7 for further

examples.

Figure 25: S � V Attribute Map

Figure 26: Location Constraint Example

30

(a) (b)

Figure 27: Containment Example

3.2.9 Location Constraint View

The Location Constraint View allows for the de�nition of spatial constraints within a visual

relation class (see 2.1.3). Figure 26 shows an example speci�cation of a location constraint.

The top line of this images de�nes that the Y coordinate of the north point (Tp: NY) of

the head of the relation (On hd from tl) is greater than (>=) the Y coordinate of the south

point (SP1: SY) of the tail of the relation plus 10 (P(0,10)).

The location constraint speci�cation element is made up of a set of menu, �eld and

button widgets. Referring to Figure 26, one can de�ne which element is a�ected by which

element (e.g, On hd from tl, On tl from rel) using the menu in the upper left of the element.

The menu labeled TP: allows one to de�ne the point on the a�ected element that is being

constrained. One can then de�ne the operator (e.g., >;<;=). The menu labeled SP1: is the

point on the a�ecting element the target point is constrained around. The �elds P(0, 0) lets

one de�ne an o�set. SP2, Distance, and % lets one have �ner control on de�ning a source

point. De�ning a source point is much like de�ning a location point (e.g. see 3.2.4). The

source point is:

if(SP2 != LPNull){ //If SP2 has been specified

if (percent != 0.0)

source point = percent along line (SP1,SP2)

else

source point = distance, D, along line (SP1,SP2)

}

else //SP2 has not been specified

result point = SP1 + Point(x,y);

The Source type �eld lets one de�ne what rectangle is to be used as the source point. \Gfx

ibbox" is the bounding rectangle of the image of the source element. \Element rectangle"

is the bounding rectangle of the points P1 and P2 of the source element. \Gfx box and ref

rect" is the merger of the bounding rectangle of the image and the reference rectangle. \Just

the reference rect" uses just the reference rectangle. The reference rectangle refers to refrect,

an attribute of VGraphElement. The refrect for an element is set to the sum of the bounding

boxes of the connected elements where the incident relation has its IBBox Reference event

ag set (see Section 3.2.5, Figure 22).

31

When the Stretchy button is false other points of the target element are translated by

the translation of the a�ected point (this maintains the size of the target element). When

the Stretchy button is true only the a�ected point is moved (if possible).

The Hint button allows one to control when this location constraint is active using the

\LC Hints ON" menu entry in the View/Flags menu. The Active button lets one control

whether this constraint is initially active or inactive. One can directly access the location

constraints of a relation through the VRelation methodObjList * GetLCList(int a�ect what).

This returns a list of the constraints which a�ect is de�ned by the a�ect what argument, one

of ONHDIX, ONTLIX, FROMHDIX, FROMTLIX. See Section 4.8 for an example of using

this method.

When the StickyX and StickyY buttons are true, the a�ected points are moved to the

closest a�ecting points. The LC Id: �eld lets one give an id to this constraint. One can

access particular location constraints with the LC Id from the VRelation::lcs attribute. The

Gfx Id: �eld lets you specify a Gfx object in the source element whose bounding box is used

as the source rectangle. The Target Class: and Source Class: �elds let one de�ne that only

certain classes are a�ected by this constraint.

Figure 27a shows how to de�ne containment of the head of a relation by its tail (non

essential details have been elided) with Figure 27b showing the result of this speci�cation.

If these constraints had had their StickyX and StickyY ags set, the a�ected element would

only be as large as the size of the bounding rectangle of the a�ecting elements. See Sections

4.1 and 4.7 for other examples of de�ning Location Constraints.

(b)(a)

Figure 28: Grouping Speci�cation and Example

32

3.2.10 Group View

An element can have any number of incident relations and connected elements. One can

group a set of incident relations or connected elements based on relation and element type.

We term these relation groupings and element groupings. In its simplest form an element or

relation group is simply a list, contained by the grouping element, of the grouped elements.

One can also de�ne a relation to link between the grouping element and the �rst element in

a group. One can also de�ne a relation that is used to connect the consecutive elements of a

group. One can use the grouping mechanism to quickly access a set of incident relations or

connected elements. One can use the relations being added to the group members to de�ne

a layout ordering using the location constraint.

The Group View of GrandView allows one to de�ne element and relation groups for any

graph element class. Figure 28a shows an example group speci�cation for an element Node.

Figure28b shows the result application constructed from the speci�cation. In Figure 28a the

grouping element is the entity labeled A. The entities labeled B,C and D are the members

of the group.

A group speci�cation consists of a direction menu, relation type �eld, element type �eld,

group id �eld, relation prototype �eld, and a �rst prototype �eld. The direction can be

either out or in. The relation type �eld is the name of a relation class (or null). The element

type �eld is also a (possibly null) class name. One can give an identi�er to a group. The

Rel proto: and First proto: �elds are (potentially null) relation class names.

The Relation Group acts similar to the Element Group except that the elements in the

group are the incident relations. One need not specify any or all of the �elds. The default

is any relation with any head (tail) are the criteria for group membership. If there is no Rel

proto or First proto relation speci�ed then there is no relation connection made between the

members of the group.

The speci�cation in Figure 28a states that when there is an outgoing relation of type

Edge with a head of type Node then add the head to the group. Add a relation of type First

between the initial element and the �rst element in the group. Add a relation of type Next

between successive members of the group. The First relation is the thick, jointed relation

from A to B. The Edge relation is the directed edge from A to B, A to C and A to D. The

Next relation is the undirected edge from B to C and from C to D. The Next relation de�nes

a Location Constraint on the head of the relation. This constraint enforces the layout of B,

C and D. See Sections 4.4 and 4.7 for examples of the use of the grouping mechanism.

3.2.11 De�ne Menu View

The De�ne Menu View allows the user to de�ne menus and associated actions to be added to

the generated editor. The speci�cation of a menu action is realized by a set of generated .h

�les. These �les are produced by the Build Everything command or by the Write out menu

command. One can use the generated �les as starting points in de�ning application-speci�c

functionality. The developer is free to edit the .h �les (in the indicated areas) to achieve

the desired functionality. (Caution: Changes to these �les may be overwritten by later �le

33

generation. It is best to merge the generated code from the .h �le directly into the target

source code.).

A menu action speci�cation, as shown in Figure 29, consists of an action name, a need,

a type, and a function name. The action name is used to de�ne an enumerated variable

and in de�ning the menu entry. The need de�nes what is needed by this action, e.g., an

element, a point, nothing. If the need is set to Element, Entity or Relation then one can also

de�ne what type of element is to be picked using the Of type: �eld. The function de�nition

(i.e., Or using func: �eld) is used to de�ne a function that determines what type of element

should be picked. This function has the signature bool func(VGraphElement*).

The result of the speci�cation in Figure 29 would be a menu entry named \Test"; acti-

vating that entry would set the state of the View so that on a left or middle button press,

an element of type Node would be searched for. The code that is produced and placed in

the ActionDoLeft.h method is as follows:

if(action == Test){

Command * c = SatisfyNeeds(p,pickedVGraphElement, pickedVEntity,

pickedVRelation, pickedGfx);

if(c != gNoChanges) return c; //If nothing was found then return

if(pickedVGraphElement){

Node * ptr = (Node*)pickedVGraphElement;

/**Put your action here**/

} return gNoChanges; }

If the need was set to Nothing then the following code would be produced in the Action-

SetAction2.h �le:

case Test:

/***Put your action here **/

break;

Figure 29: Menu Speci�cation

Section 4.1 provides a detailed example of the use of the De�ne Menu View.

3.2.12 Default Relations View

The Default Relations view allows one to de�ne the default creation of relations between

elements in the target application based on element type and spatial positioning. Speci�-

cations in this view result in generated code that is included in the target editor methods

34

editorView::DoneAddingElements and editorView::DoneMovingElements. The DoneAddin-

gElements method is called when new elements have been added to a view. The DoneMovin-

gElements method is called after some elements have been moved. The generated code cre-

ates new relations between previous elements and the new (or moved) elements based on the

criteria speci�ed in the Default Relations View. The code is written out from the Write out

dt rels entry in the GrandView menu and also from the Build Everything command.

Figure 30 shows this view and two example speci�cations. The �rst speci�cation de�nes

that a relation of type R2 is added between a new element of type N1 and all elements of

type N2 that are spatially contained by the new element. There is further criteria in this

speci�cation that the old elements (i.e., the N2 elements) do not already have an incident

relation of the type about to be added.

The set of available spatial relationships are: contains, contained by, near, under, over,

left of, and right of. The direction menu (e.g., from old to new) allows one to specify the

tail and head of the relation. The Func: �eld allows one to specify a function that allows for

other selection criteria. This function has the signature:

bool func(VGraphElement* newelt, VGraphElement* oldelt)

When true, the Unique new? button de�nes that the relation will not be added if there

already exists such a relation between the new element and another element of the old type.

When true the Unique old? button de�nes that the relation will not be added if the old

element has such a relation between it and an element of the new (or moved) type. The

How many: menu speci�es how many relations, 1 or N, are added. If only one is to be

added, then the closest old element that satis�es the criteria is used. If N are to be added,

then all old elements that satis�es the criteria are used. The X: and Y: �eld determine the

absolute minimum X and Y distance between the closest points of the new element and the

old elements. If the distance is within this range then the old element is considered for the

relation addition. This criteria does not a�ect the contains and contained spatial relations.

The second speci�cation shown in the �gure de�nes the addition of a relation of type

ChildOf between a Child element and the closest Parent element that satis�es the given

criteria. The criteria is the Child is under the Parent, the Child does not have a predecessor

of type Parent and the distance between the Child element and the Parent element is less

than(50,50).

3.3 Generating an Application

Once a speci�cation has been created it should be saved (using the Filemenu). This saves the

actual Grand speci�cation that the user has created. From the Class View, the GrandView

menu allows one toWrite out .C/.h orWrite out all .C/.h. The latter produces the .C and .h

�les for each class and the former produces these �les for a speci�c class (chosen by selecting

the class). In general, generating an application after changing a speci�cation requires only

that the speci�cation for any changed classes be written out. Note that it is important not

35

Figure 30: Default Relation Speci�cation

to confuse the notion of saving a speci�cation with that of writing out (or generating) a

speci�cation.

The �rst time speci�cations are written out, the entire application has to be generated.

This is accomplished with the Build Everything option from the GrandView menu. The Build

Everything command writes out all of the speci�cations and runs a set of external scripts

that produce the generated editor template code. Once this process is done, an executable

for the application can be produced using the Make�le provided for this purpose.

3.3.1 A Guide to the Generated Application Code

The previous section explains how to use GrandView to produce a visual application. In

this section, we discuss the code generated by GrandView that comprises the application.

We begin by discussing the various generated �les and then discuss the contents of the �les

in detail.

The table in Figure 31 shows the �les produced by GrandView. All �les are produced

during the Build Everything phase. The Class Code �les can also be produced with theWrite

out .C/.h and Write out all .C/.h menu entries. The Action �les can be produced with the

Write out menu menu entry. Except for the Class Code �les the names of all �les produced

are pre�xed with editor (e.g., editor.C, editorHSEnable.h, or editorActionDoLeft.h) with the

exception of Alleditor.h and Alleditor.C (where editor is the name speci�ed in the ETRC �le

or through the Change Target Name menu entry). The Action, HS, Ids, and MakeGraph

�les are incorporated into the editor.h and editor.C �les through #include directives.

The generated code includes a Make�le that can be used to produce an executable for

the application. The classes that realize a speci�c application are de�ned in the �les edi-

tor.h and editor.C. The �les class.h and class.C are the de�nition and implementation for

each language construct class (speci�ed in the Class View). The �les ActionDoLeft.h, Ac-

tionDoMiddle.h, ActionEnableMenu.h, ActionEnum.h, ActionMakeMenu.h, and ActionSe-

36

Function FileName Contents

Build system Make�le

Editor editor.h

editor.C editor engine and de�nitions

Class code class.C class implementation

(one for each class) class.h class de�nition

Menu and mouse actions ActionDoLeft.h left mouse button

ActionDoMiddle.h middle mouse button

ActionEnableMenu.h

ActionEnum.h

ActionMakeMenu.h

ActionSetAction2.h editor actions

Hide/Show menu HSEnable.h enable HS menu items

HSEnum.h menu constants

HSList.h menu item names

HSSetAction2.h HS menu actions

Miscellaneous Ids.h Generated variables for Gfx ids

MakeGraph.h construct prototype graph

Alleditor.h include for all classes .h

Alleditor.h include for all classes .C

DtRelation.h default relation code

Figure 31: Application Files

37

tAction2.h are produced from the De�ne menu view. The �les HSEnable.h, HSEnum.h,

HSList.h, and HSSetAction2.h implement the Show/Hide menu (produced as part of the

standard application architecture). The �le MakeGraph.h creates the initial set of prototype

elements that appear in the palette of the default application. The default is that all visual

class speci�cations in the Class View appear in the palette of the generated application.

The �le Ids.h contain integer declarations for Gfx and Location Constraint ids. The �les

Alleditor.h and Alleditor.C group the class de�nitions and implementations for inclusion into

editor.C. The �le editorDtRelation.h contains the code generated from the Default Relation

view.

Each class.h contains the C++ class de�nition, including any speci�ed attributes or

member functions (via the Attribute View). Each class.C contains the implementation of the

member functions for its corresponding class.h. Each class de�nition includes the following

member functions:

MetaDef(Node);

Node(){}

void Init();

void InitClone();

void ChangeAttribute(int attrid,void * attr,DataType type);

void* GetAttribute(int attrid,DataType & type);

OStream& PrintOn(OStream&);

IStream& ReadFrom(IStream&);

MetaDef(Node) is a preprocessor macro provided by ET++ (see Section 3.1). The func-

tion Init is used for object initialization for all objects of this type. For objects created via

cloning, the functions InitClone and InitAfterClone are used for initialization. See Section

3.4.1 for further discussion on these methods.

The functions ChangeAttribute and GetAttribute are used for attribute mapping pur-

poses. The functions PrintOn and ReadFrom are used for object output and input respec-

tively. Additional member functions include the following functions for accessing individual

attributes, one for each attribute (denoted by attrname):

void Set_attrname(attr_type input_arg);

attr_type Get_attrname();

The �le class.C contains the implementation for these methods (as well as other methods).

As previously mentioned, all class �les are included into the application code via the �les

Alleditor.C and Alleditor.h.

The generated editor classes contain a large number of method de�nitions and descrip-

tions of those methods. The majority of these methods are commented out; they exist as

hooks into the general control ow of the base editor classes. We detail the most important

of these methods. For more detail on these and other methods see the generated editor code.

The following methods are used in the generated editor classes to realize the default behavior

of the application.

38

void <editor>::MakeGraph(SGraphElement* & sg, ObjList* & vgraphs)

bool <editor>View::SetAction2(Actions a,void * data)

Command* <editor>View::DoLeftButtonDownCommand(Point,Token,int clicks)

Command* <editor>View::DoMiddleButtonDownCommand(Point, Token, int)

void <editor>View::DoSetupMenu(Menu*)

static Menu*<editor>View::MakeMenu(int menuId)

The method editorMakeGraph sets up the initial system architecture. This method adds

a set of VGraphElements to the vgraphs argument. For each VGraphElement placed in the

vgraphs list, an editorView is created. The vgraph attribute (see Section 2.2) of these views is

set to the respective entries in the vgraphs list. By default only one VGraphElement is added

to this list. The �le editorMakeGraph.h is included in this method. In this include �le are

entries that create language element prototypes and add them to the VGraphElement::protos

list of the elements placed in the vgraphs list. For each language element prototype in the

protos list of the editorView::vgraph attribute an entry is created in the palette for that

view. Setting up various application architectures is discussed in more detail in Sections 4.5,

4.7 and 4.1.

The method MakeMenu is called to create new menus based on the menu id parameter.

DoSetupMenu is called when a menu is activated. In this method one can enable or disable

menu entries and make changes to the state of menu entries. Examples of these methods are

in the generated editor.C �le.

Selection of a menu item causes control to be transfered to SetAction2 where the action is

handled. Several sorts of actions can occur: �rst, an action may require immediate handling

(e.g., hiding and showing parts of the graph, etc.); an action may require system modes

to be set (e.g., delete mode); �nally, an action may require further input (e.g., a point, an

element). This can be set with the EscalanteView::SetNeed() method. This is a polymorphic

method that takes the form:

void SetNeed(Needs n, Class * neededClass=0)

void SetNeed(Needs n,class Class * cl1,Class* cl2)

void SetNeed(Needs n,ElementOkFunc f)

Needs is an enumerated variable with one of the values NEED NONE, NEED ENTITY,

NEED RELATION, NEED ELEMENT, NEED E1E2, NEED POINT and NEED GFX. The

current need is used in the DoLeftButtonDownCommand and DoMiddleButtonDownCom-

mand methods to determine what kind of things are needed (e.g., relation, gfx, point).

NEED E1E2 is used when two elements are needed. The neededClass arguments are used

to set the element class that is needed. (e.g., SetNeed(NEED ENTITY, Meta(Node))). The

cl1 and cl2 arguments are used for the NEED E1E2. One can also de�ne a function that is

called to determine the type of element being picked.

DoLeftButtonDownCommand and DoMiddleButtonDownCommand are called when the

respective mouse buttons are depressed. Like SetAction2, these functions use the current

state/action to determine what action to take for a button click.

39

3.3.2 Creating Grid Base Applications

Escalante supports the creation of applications whose elements are based on a grid. This

grid structure allows for the regular layout of the elements and for the direct access to

elements based on absolute or relative positions. In this section we discuss the facilities

that Escalante provides for creating grid based applications. In Sections 4.2 and 4.3 we give

speci�c examples of grid based applications.

Grid based applications are created using the ObjectGrid class. This is a utility class in

the src/util directory. The ObjectGrid class maintains a mapping between the position of

an element and the element. Elements that are part of a grid need to be derived from the

GridElement class, a prede�ned class that registers its instance elements within an instance

of an ObjectGrid. This registration is based on the position of the element. The GridElement

de�nes a virtual method, ObjectGrid* GetGrid(), to obtain the instance of the ObjectGrid

in which it is to register. By default this method returns 0. It is up to derived classes to

return the appropriate ObjectGrid pointer. The generated editor template contains code

that allows one to create applications that make use of the ObjectGrid and GridElement

classes. There is a global boolean variable, gDoGrid, that is de�ned in the generated editor

module. Setting this to TRUE causes the creation of gGrid, a globally GridObject. One can

then add the GetGrid method to the appropriate language classes. The default behavior

of the base EscalanteView is to position all elements on a spatial grid when the gGrid has

been created. To have unconstrained placement and movement of elements not registered in

an ObjectGrid one can overwrite the method bool VGraphElement::AcceptGrid() to return

FALSE.

Figure 32 shows some of the methods de�ned by the ObjectGrid class. These methods

allow for the access of elements in various directions from a point based on the type of the

element. If the Class*c argument is non-null then the method returns an element of type c

(if any) at the given grid position. If Class*c is null then the �rst element at the given grid

position is returned. The GetFirst... methods returns the �rst element encountered in the

direction speci�ed. Grid points that are some direction from a given point can be retrieved

using the O�set... methods. The O�setByDir method uses a set of prede�ned directions

(e.g., DIR RIGHT, DIR DOWN RIGHT, DIR UP) to calculate the grid point with respect

to a given point. The GetElementByDir method allows one to retrieve an element using the

prede�ned directions.

3.3.3 Creating Dynamic Applications

To achieve dynamic behavior within an application (e.g., simulation) an editorTimer class is

provided in the editor template code. This class is derived from the TimerObject class which

registers itself to be called back every n time units. The virtual method TimerObject::Tick()

is used within the derived class to implement application speci�c functionality. For an ele-

ment to register itself with a timer the method, TimerObject* GetTimer(), is overwritten by

the element, returning a pointer to a TimerObject. The generated editor template contains

the code and class de�nitions that allow the developer to quickly create applications that

40

VGraphElement* Get[Above,Below,Right,Left...](Point p, Class*c =0)

VGraphElement* GetFirst[Above,Below,Right,Left](Point p)

Point Offset[Up,Down,Right,Left](Point o)

Point Offset[UpRight,UpLeft,DownRight,DownLeft](Point o)

Point OffsetByDir(int dir, Point p)

VGraphElement * GetElementByDir(int dir, Point origin, Class * c =0)

Figure 32: Object Grid Methods

make use of the TimerObject. There is a global boolean variable, gDoTimer, de�ned in

the generated editor module. Setting this to TRUE causes the creation of geditorTimer, an

instance of a editorTimer. Template code is provided in the generated module that can be

changed to suit the intended purposes. Menu entries are added to the editor menu that allow

for the starting, stopping and stepping of the timer as well as controlling the speed of the

timer.

3.4 Finishing Touches

In this subsection we discuss how one can extend an application that is produced using

Escalante to include application- speci�c functionality. There are two ways to add code

to an application: �rst, functionality can be inserted directly into the generated language

classes using the Attribute View TextInclude element. These methods may be language

speci�c or may be instances of virtual methods de�ned in the base classes of the hierarchy.

Second, the language developer can (and should be prepared to) modify the application code

directly. The generated editor module code (editor.[Ch]) is speci�cally meant to be modi�ed

by the language developer.

In the next two subsections we discuss both of these methods for adding functionality to

an editor. In the second section we discuss commonly used hooks and methods for adding

code directly to an editor.

3.4.1 Support for Additional Code

For class methods generated by GrandView, there are a set of corresponding methods de�ned

in the hierarchy that get called that have the pre�x MS . One can also use the virtual

methods that are not generated to tap into the overall control ow (e.g., AddInRelation,

NewHead).

This �rst set of member functions are for initialization. Initialization can occur at one

of three times. The Init and MS Init methods are called on the creation of a new element

through the new method. InitClone and MS InitClone are called on the cloning (or copying)

41

of the element. Most of the creation of new elements within Escalante is accomplished

through the cloning of previously created elements. InitAfterClone and MS InitAfterClone

are called after all elements of a set have been cloned and have had their InitClone methods

called. InitAfterReading and MS InitAfterReading are called after an element has been read

in from disk.

void MS_Init(); Called when an object is created

void MS_InitClone(); Called when an object is cloned

void MS_InitAfterClone(); Called after the object has been cloned

void MS_InitAfterReading(); Called after the object has been read in

If one adds their own attributes to a class (i.e., outside of GrandView) the attribute map-

ping functionality can still be used through the MS GetAttribute and MS ChangeAttribute

methods.

void * MS_GetAttribute(int attrId,DataType & type);

void MS_ChangeAttribute(int attrId,void * attr,DataType type);

ResolvePtrNeeds and MS ResolvePtrNeeds are called after all objects have been cloned

and allows for the updating of any pointers to objects de�ned that were also cloned. Before

calling this function, call the function NeedPtr(this) in MS InitClone(). This registers the

newly cloned object to be called back later.

void MS_ResolvePtrNeeds();

These member functions support input and output of user de�ned attributes.

OStream& MS_PrintOn(OStream&o);

IStream& MS_ReadFrom(IStream&o);

MS ElementsOk has two forms and is called (in VRelation and SRelation) whenever the

tail or head of a relation is being set. If FALSE is returned then the action is not taken.

These methods are also called when picking possible elements on the screen when setting

the tail or head of a relation. MS ElementsOk has the forms:

bool MS_ElementsOk(SGraphElement*tl,SGraphElement*hd)

bool MS_ElementsOk(VGraphElement*tl,VGraphElement*hd)

MS OkToAddElement is called when there are multiple VGraphElements associated with

a single SGraphElement. When an element is added to one vgraph that is propagated to

the sgraph and a corresponding SGraphElement is added. The addition of that element is

propagated to the other vgraphs. This method is called to check to see if it is okay to add

a VGraphElement that corresponds to the SGraphElement. MS OkToAddElement has the

form:

bool MS_OkToAddElement(SGraphElement * sg)

42

There also exist a large number of virtual methods de�ned and used in the base classes

that are not de�ned or used in the generated classes. One can overwrite these methods

in the generated classes to accomplish some language speci�c functionality. Some of these

methods are shown in Figure 33. (Note - the P[V,S] refers PV and PS. PVGraphElement and

PSGraphElement are template based classes which the VGraphElement and SGraphElement

classes are derived from.)

//Used by EscalanteView when picking the tail or head of a relation.

bool OkToAdd[In,Out]Relation(P[V,S]Relation * r);

//Called when adding or removing in and out relations

void Add[In,Out]Relation(P[V,S]Relation *r);

void Remove[In,Out]Relation(P[V,S]Relation *r);

//Called when the SetDead method has been called in a incident relation

void [In,Out]RelationDead(P[V,S]Relation *, bool);

//Called when a there has been a change to a connected element

void New[Tail,Head](P[V,S]Relation*r,

P[V,S]GraphElement*newtl=0,

P[V,S]GraphElement*oldtl=0

);

//Called in a Relation when setting the tl or hd

bool Relation::Set[Head,Tail](P[V,S]GraphElement * h= 0);

bool Relation::SetTail(P[V,S]GraphElement * t=0);

Figure 33: Element and Relation Virtual Methods

3.4.2 Commonly Used Hooks

In this subsection, we provide detailed descriptions of commonly used hooks in the gener-

ated software, and also provide a few answers to commonly asked questions about adding

functionality.

Iterating Through the Graph. Many times one needs to iterate through the elements

which make up a graph. In Escalante there is no special graph data structure; rather, the

graph is a VGraphElement that has incident relations connecting it to the members of the

graph. The member attribute of the view, vgraph, is a pointer to the element that is the

\graph." So the question should be how to iterate through the connected relations/elements

of an element.

43

There are macros de�ned in the system that support iterating through the incident

relations of an element. If you want to iterate through the elements of the graph then use

the ITERATE OUT macro on the vgraph.

VRelation * r; VGraphElement * elt;

ITERATE_OUT(vgraph,r,VRelation,elt,VGraphElement)

//Use elt here

//elt will be set to the head of the outgoing relation, r.

END_ITERATE_OUT

You can change the class types, VRelation, VGraphElement, if you want to limit your

search to a particular type. e.g.

VRelation * r;

SomeParticularEltType * elt2;

ITERATE_OUT(vgraph,r,VRelation,elt2,SomeParticularEltType)

//only elements of type SomeParticularEltType will get to here.

END_ITERATE_OUT

The ITERATE IN and END ITERATE IN macros allow one to iterate through the

incoming relations of an element. The ITERATE IN OUT and END ITERATE IN OUT

macros allow one to iterate through both the incoming and outgoing relations of an element.

User De�ned Attribute Filters. One may want to use some function as an attribute

�lter that is not prede�ned. To do this, set the global variable gExtraFilterFunc to a function

de�ned as follows.

bool func(int funcId,

void * & data, DataType & type,

Object * from, Object * to,

int fromid = -1, int toid = -1

);

Now you can use the set of prede�ned �lter ids, cUserDe�ned[1-10], to do your own

mapping. The funcId parameter is one of the cUserDe�ned ids. The parameter data is the

incoming attribute value and should be set to the new value. The parameter type is the type

of the incoming value and should be set to the type of the new value (e.g. eInt, eChar, etc.).

The parameters fromid and toid are the attribute ids of the source and target attributes.

One can use the following methods (de�ned in src/util/AttrMap.h) to change the incoming

void*data to the newdata argument (e.g., data to int, data to bool).

bool ChangeData(void * data,DataType fromtype, int & newdata);

bool ChangeData(void * data,DataType fromtype, bool & newdata);

bool ChangeData(void * data,DataType fromtype, float & newdata);

bool ChangeData(void * data,DataType fromtype, double& newdata);

bool ChangeData(void * data,DataType fromtype, char* & newdata);

44

One can use the following methods to return pointers to the input data and to set the

type parameter.

void * GetValue(double d, DataType & type);

void * GetValue(char* d, DataType & type);

void * GetValue(int d, DataType & type);

void * GetValue(bool d, DataType & type);

void * GetValue(float d, DataType & type);

e.g.:

bool b; ChangeData(data,type,b); return GetValue(b,type);

Mapping Values to Colors. The system supports mapping a numeric value to a color.

However this mapping is �xed, i.e. the incoming value is transformed to in integer, this

is taken as one of the �xed enumerated color types, (see src/gfx/CommonGfx.h). If you

want to de�ne your own mapping there is a global array, gColorMap, which is an array of

enumerated color types. You can set the elements of the array to the desired colors. The

value mapped to the Gfx attributes [pen, �ll, text]color map is taken to be an index into

this array. See Section 4.2 for an example.

Finding Connected Elements and Incident Relations. There are a set of methods

that allow one to �nd predecessor (tails of in relations), successor (heads of out relations)

elements and incident relations based on type. They are as follows.

[PS,PV]GraphElement * Pred(Class *relClass=0, Class * eltClass=0)

[PS,PV]GraphElement * Succ(Class *relClass=0, Class * eltClass=0)

[PS,PV]Relation * RelPred(Class *relClass=0, Class * eltClass=0)

[PS,PV]Relation * RelSucc(Class *relClass=0, Class * eltClass=0)

To �nd an incoming relation of type E for elt one would use rel = elt.RelPred(Meta(E)).

To �nd the head of type N of an outgoing relation of type E one would use head =

elt.Succ(Meta(E),Meta(N)).

Unique Attribute Values It is often the case that an element requires some unique

value for an attribute (e.g., an identi�er). To accomplish this one needs to overwrite the

methods MS InitAfterClone and MS InitAfterReading to set the attribute to some unique

value. These methods are called after the two ways in which a new element is created during

an application(i.e., cloning and reading from disk). For example:

int gNodeId=0;

void Some_Class::MS_InitAfterClone(){

Some_Class_BASE::MS_InitAfterClone();

my_unique_id = gNodeId++;

}

45

void Some_Class::MS_InitAfterReading(){

Some_Class_BASE::MS_InitAfterReading();

my_unique_id = gNodeId++;

}

Dialog Boxes. There is no explicit support provided by Escalante for dialog boxes. How-

ever, there is a class, EscalanteDialog, that provides some base functionality (a bit more

than deriving directly from the ET++ class Dialog). EscalanteDialog sets up an Ok and a

Cancel button. You can overwrite the method Done(int id). This method is called when

the Ok or cancel button is selected. The method, VObject * GetInner(), returns the body

of the Dialog. There is also a TextFieldDialog class that provides a simple text �eld. You

can then retrieve the text with the method char* GetText(). These classes can be found in

src/editor/EscalanteView.h.

46

4 Examples

In this section we provide several examples that are intended to illustrate various aspects of

how Escalante can be used to create a visual language application. Each of these examples

has been constructed using Escalante; in some cases the visual application was required for

another research project, while in other cases the example is contrived to illustrate an Es-

calante concept. Thus the examples are intended to describe the versatility of Escalante, and

to provide guidance for the visual application designer in building his/her own applications

using the system.

4.1 Boolean Logic Circuit

Figure 34 shows a system that supports the creation and manipulation of boolean logic cir-

cuits. The language this application is based on consists of AndGate, OrGate, NotGate,

and OnO� entities and the Connection relation. The user constructs a circuit using these

language elements. The image of the OnO� entity consists of an ImageButtonGfx and a

TextFieldGfx. The user can directly manipulate the input values of the circuit through the

ImageButtonGfx of the OnO� entity. These changes are propagated by the Connection rela-

tion to the gate entities. The gates apply their respective boolean operations to their input

Connection relations and propagate the result value to their output Connection relations.

One can label an OnO� entity using its TextFieldGfx. The value of the label is propagated

by the Connection relations to the gates which use their set of input labels to construct a

textual representation of their boolean operation. Through the BooleanCircuit menu the

user can turn on or o� the display of the labels for all elements or for a particular element.

The tail point of a Connection relation is de�ned to be the east point of the tail of the

relation. The NotGate entity is constrained to have only one incoming Connection relation.

We will now describe the Grand speci�cation and the manual coding required to implement

this application.

Figure 34: Circuit Application

47

Figure 35: Circuit Speci�cation

Figure 35 shows the Class View

7

that is used to create the BooleanCircuit application.

The BaseElement class is used to encapsulate the common state and functionality of the

language entities. Derived from BaseElement is the OnO� class and the Gate class. The

Gate class serves to encapsulate functionality that is common to the AndGate, OrGate and

NotGate classes. The Connection class is the only relation class used in this application.

The Attribute View for the BaseElement is shown in Figure 36. The value attribute is

a boolean attribute with default value of FALSE. This is the circuit value of the element.

A precondition, CheckValue, is de�ned for this attribute. CheckValue is a virtual method

de�ned in the Text Include element that, by default, returns TRUE. This method is over-

written by the OrGate, AndGate and NotGate classes in order to apply their respective

boolean operations on their set of input values.

Figure 37 shows the CheckValue method for the AndGate and NotGate elements. In

AndGate::CheckValue the newvalue argument is an aliased boolean variable which is the

input to the method BaseElement::Set value(). The newvalue is initially set to TRUE. The

in relations of type Connection with tail of type BaseElement are iterated through for the

AndGate using the macro ITERATE IN. If any of these values are FALSE then the newvalue

argument is set to FALSE. This method returns whether the newvalue is not equal to the

previous value because there is no need to change BaseElement::value if newvalue is the same.

Since there can only be one input Connection relation to a NotGate the NotGate::CheckValue

method uses the Pred method to �nd any predecessor BaseElement. It then sets the newvalue

to the inverse of the predecessors value attribute.

The BaseElement class also contains a character attribute, label. This attribute can be

changed through the TextFieldGfx of the OnO� entity. CheckLabel is a precondition de�ned

for the label attribute. This method returns TRUE by default but is overwritten by the Gate

class in order to create the textual representation of the boolean expression. This method is

7

This speci�cation is included in the release of Escalante2.3.

48

Figure 36: BaseElement Attribute View

similar to the CheckValue methods described above. In the Gate::CheckLabel method the

input elements are iterated through adding their label attributes to the label attribute of

the current Gate element. The shown attribute is a ag attribute used to turn on/o� the

visibility of the label of an element. When BaseElement::shown is TRUE the label is shown,

when FALSE the label is not shown.

Figure 38 shows the GfxView for the Gate element. The image of a Gate element consists

of a BitmapGfx and two TextGfx. The �lename �eld of the BitmapGfx speci�cation is

normally taken as raw text which is quoted in the generated code. However, in GrandView

when any �eld that is normally taken as raw text is pre�xed with a n then the remainder

of the �eld is dumped out verbatim in the generated code without quoting. In the case

of Figure 38 the value of the �lename �eld is nGetIconName(). GetIconName is a virtual

method de�ned in VGraphElement that is overwritten by the AndGate, OrGate and NotGate

classes to return the name of their respective bitmaps. The left most TextGfx speci�cation

in Figure 38 is used to display the value attribute in the center of the Gate element. Note the

GfxAttrMap attached to this TextGfx. This maps the BaseElement::value attribute to the

TextGfx::value attribute. The TRANSLP Location Point is used to de�ne that the TextGfx

is translated to the center + (0,-1) of the bounding rectangle formed by P1 and P2. The

Trans: �eld of the GfxBase image (not shown) for the TextGfx is set to CTR. The other

TextGfx speci�cation is used to display the label attribute at the top of the element. This is

accomplished using the TRANSLP Location Point set to N. The Trans: �eld of the GfxBase

image is set to S. For this TextGfx two attribute mappings are used. The �rst GfxAttrMap

is used to map the BaseElement::label attribute to the value of the TextGfx. The second

GfxAttrMap de�nes a mapping from the BaseElement::shown attribute to the Gfx::Shown

49

BaseElement * baseelt; Connection * conn;

bool AndGate::CheckValue(VGraphElement *,int,bool, bool&newvalue){

newvalue = TRUE;

ITERATE_IN(this,conn,Connection,baseelt,BaseElement)

if(!baseelt->Get_value()) {newvalue = FALSE;break;}

END_ITERATE_IN

return (Get_value() != newvalue);}

bool NotGate::CheckValue(VGraphElement *,int,bool, bool&newvalue){

newvalue = FALSE;

baseelt =(BaseElement*) Pred(Meta(Connection), Meta(BaseElement));

if(baseelt) newvalue = !baseelt->Get_value();

return (Get_value() != newvalue); }

Figure 37: CheckValue Methods

attribute. The BaseElement::shown attribute is used to turn on or o� the display of the

label.

As shown in Figure 39, the relation attribute map mechanism is used within the Con-

nection relation to propagate the BaseElement::value and the BaseElement::label attributes

from the tail of the relation to the head of the relation. Note the mapping of the attribute

GraphObject::existence to the BaseElement::label attribute from the relation to the head.

The GraphObject::existence attribute represents whether a GraphObject is deleted or not.

On deletion of a Connection relation the change to its existence is propagated to its head

element. This triggers a call to the Gate::CheckLabel method which updates the textual rep-

resentation of the boolean expression, taking into account the existential state of its input

relations.

Figure 40a shows the Check Tail Head View for the Connection relation. This speci�ca-

tion states that the tail can only be of type BaseElement and the head can only be of type

Gate (i.e., one cannot have an input Connection relation to an OnO� element).

Figure 40b shows the Location Constraint view for the Connection relation. This de�nes

that the tail point of the relation is equal to the east point of the element rectangle of the

relation's tail. The Source type: �eld is set to Element rectangle (i.e., rectangle formed by

P1 and P2) instead of the Gfx ibbox because the image of the the label attribute of the

Gate and OnO� elements a�ects the Gfx ibbox. We want the relation to attach to the east

point of the BitmapGfx which is the east point of the Element rectangle. Also, note that the

Stretchy button has been set to TRUE. We do not want this constraint to a�ect the other

points of the relation, only the tail point.

50

Figure 38: Gate GfxView

Figure 39: Connection Relation Attribute Map View

4.1.1 Modi�cations to BooleanCircuitView

Other than the CheckValue and CheckLabel methods described above the only other manual

coding required to implement the BooleanCircuit application was to set up the initial system

architecture in MakeGraph, to enforce the single input relation rule for the NotGate and

to allow the user to turn on or o� the label of a particular element and the labels of all

elements.

The following is the manually written code in BooleanCircuit::MakeGraph that is used to

overwrite the generated code in the BooleanCircuitMakeGraph.h �le. The include directive

has been commented out and the appropriate element prototypes have been added to the

protos list of vgraph1 using the ADDV macro. This macro creates an instance of the �rst

argument and adds it to the protos list attribute of the second argument.

51

(a) (b)

Figure 40: Connection Views

//#include "BooleanCircuitMakeGraph.h"

ADDV(AndGate,vgraph1)

ADDV(OrGate,vgraph1)

ADDV(NotGate,vgraph1)

ADDV(OnOff,vgraph1)

ADDV(Connection,vgraph1)

To enforce that a NotGate only have one incoming Connection relation we have overwrit-

ten the EscalanteView::NewHeadOk method as shown below. This method is called when a

relation is being added and the head of the relation is being picked. If FALSE is returned

then the candidate new head element is not chose. In this method we check if the new

relation, nr, is of type Connection and the new head, newhd, is of type NotGate. If so we

check if the newhd already has an incoming relation of type Connection.

bool BooleanCircuitView::NewHeadOk(VRelation* nr,VGraphElement *newhd){

if(nr && newhd && newhd->IsKindOf(NotGate) && nr -> IsKindOf(Connection))

return !(newhd->RelPred(Meta(Connection)));

return BooleanCircuitView_BASE::NewHeadOk(nr,newhd);

}

The De�ne Menu View was used to create the framework to turn on and o� the display

of labels of BaseElement elements. Figure 41a shows the De�ne Menu View speci�cation

used. We have de�ned four menu entries - ShowLabel, HideLabel, ShowLabels, HideLabels.

The ShowLabel and HideLabel commands require an element of type BaseElement. The

HideLabels and ShowLabels commands require nothing. These commands act on all of the

elements of the graph.

Figure 41b shows the code from the BooleanCircuitActionSetAction2.h �le that realizes

the ShowLabels command. First the EscalanteView attribute vgraph is iterated through,

setting to TRUE all of the BaseElement::shown attributes (causing the Gfx to be turned on).

52

(a) De�ne Menu View

case eShowLabels: {

BaseElement * elt; VRelation * rel;

ITERATE_OUT (vgraph, rel, VRelation, elt, BaseElement)

if(!elt->Get_shown()) elt->Set_shown(TRUE);

END_ITERATE_OUT

Iter next(vgraph->protos); //Check the protos list

while(elt = (BaseElement*)next())

if(elt->IsKindOf(BaseElement)) elt->Set_shown(TRUE);

} break;

(b) BooleanCircuitActionSetAction2.h code

Figure 41: De�ning BooleanCircuit Menus

Next the protos list of the vgraph is iterated through, changing the value of the BaseEle-

ment::shown attribute for any prototypes derived from BaseElement. The implementation of

the HideLabel and ShowLabel commands consists of inserting one line of code for each com-

mand in the BooleanCircuitActionDoLeft.h �le (e.g., ptr->Set shown(TRUE or FALSE);).

4.2 WaterWorks

The WaterWorks system, shown in �gure 42, allows the user to create a dynamic system

of water sources, pipes, sinks, water drops and water vapor. All of the elements have an

amount of water that can be set directly. The amount of water in a pipe is mapped to the

color of the pipe. The amount of water in a droplet or in vapor is shown directly as numeric

text. Pipes and buckets also have a capacity. When the amount of water in a pipe reaches

the pipe's capacity the color of the pipe changes to red and water begins backing up in the

upstream pipes. When a bucket reaches capacity water ows out of the bucket.

53

Figure 42: WaterWorks Example

When animating a WaterWorks system water drops fall until they hit some other element.

If that element can accept water then the drop ows into the element. If the element cannot

accept water then the water drop turns into water vapor. Water vapor behaves like a water

drop except water vapor rises. On encountering an obstacle vapor condenses and turns into a

drop. Faucets produce water drops with a certain amount at a certain rate. Kettles produce

water vapor. An umbrella catches both water drops and water vapor and splashes them to

either side. Rocks do not accept any water.

WaterWorks is a grid based system as discussed in Section 3.3.2. Figure 43 shows the

speci�cation of the classes which make up the WaterWorks system. The elements of a

WaterWorks program are all derived from the GridElement class. The BaseElement class

overwrites the GetGrid and GetTimer methods to return the globally de�ned pointers, gGrid

Figure 43: WaterWorks Class Speci�cation

54

class RightPipe :public BasePipe{

int AcceptFromLeft();

char* GetOutlineIcon(){return "rpipe.im";}

char* GetFillIcon(){return "rpipe2.im";}

PipeDirection GetDirection(){return eDirRight;}};

class DownPipe :public BasePipe{

int AcceptFromTop();

char* GetOutlineIcon(){return "dpipe.im";}

char* GetFillIcon(){return "dpipe2.im";}

PipeDirection GetDirection(){return eDirDown;}};

Figure 44: Derived Pipe Classes

gColorMap[1] = eCyan; gColorMap[2] = eSkyBlueLight;

gColorMap[3] = eSkyBlueDeep; gColorMap[4] = eCornflower;

gColorMap[5] = eBlue; gColorMap[6] = eSlateBlueLight;

gColorMap[7] = eSlateBlue; gColorMap[8] = eCobalt;

gColorMap[9] = eMidnightBlue; gColorMap[10] = eUltramarineViolet;

Figure 45: WaterWorks Color Map

and gWaterWorksTimer as described in Sections 3.3.3 and 3.3.2. The gWaterWorks timer

drives the animation of a WaterWorks system.

TheWater element has a boolean attribute, liquid, that determines the state of the water

(i.e., vapor or drop). The Water::liquid attribute is used to display the appropriate bitmap

and to determine the behavior of the element during animation.

The BasePipe class is the parent class of a set of derived pipe elements (e.g., RightPipe,

DownPipe). The derived pipe element classes were manually coded. Figure 44 shows the

manually coded class de�nitions for the RightPipe and the DownPipe classes. The images

of the derived pipe elements are de�ned using two BitmapGfx in the BasePipe class. These

BitmapGfx show the outline of the pipe and the water in the pipe. The bitmap �lenames

for these two BitmapGfx are obtained through the virtual methods GetOutlineIcon and

GetFillIcon as shown in Figure 44. The amount of water in a pipe is an integer attribute

and is mapped to the shown attribute of the BitmapGfx that represents the �lled image of a

pipe (i.e. amount != 0 implies show the �lled bitmap). The amount attribute is also mapped

to the Fill color map attribute of this BitmapGfx. Figure 45 shows how the gColorMap was

set. Higher index numbers are mapped to successively darker shades of blue. The animation

behavior for most of the derived pipe elements is de�ned in the BasePipe class. This class

uses the method GetDirection to determine in which direction the water ows out of the pipe.

55

The methods AcceptFrom[Left,Right,Bottom,Top] are virtual methods that are de�ned in

the BaseElement class that return how much water can be accepted by an element from the

direction speci�ed.

Figure 46: Blocks

4.3 Blocks

The Blocks application, shown in Figure 46, consists of a set of elements derived from

the GridElement class described in Section 3.3.2. The Killer, Block and Ball elements are

registered with a TimerObject. The Brick element is not registered with the timer. In this

application the elements registered with the timer drop 1 level down each timer tick. Blocks

will stop dropping when there is another element under the Block. Balls will attempt to roll

to the right or left if there is an element below the Ball and if there is no element to the

right or left. The Killer elements destroy whatever is in their path, leaving a Splat element

behind.

void Killer::Tick(){

Point p = GetOrigin(); if(p.y > 1000) return;

if(justEaten){

VGraphElement * vgraph = Pred(Meta(VMemberOf));

Splat * d =(Splat*) CloneElt(gSplatProto,vgraph,gPoint0);

d->SetOrigin(p); justEaten = FALSE; }

if(elt = gGrid->GetBelow(p) && elt != this){

justEaten = TRUE;KillElement(elt);}}

SetOrigin(gGrid->OffsetDown(p)); }

Figure 47: Blocks Example

56

Figure 47 shows some example code used to implement the behavior of the Killer element.

The method Tick is called by the BlocksTimer at every clock tick. In the Killer::Tick method

the current position of the element is found using the GetOrigin method. Next, if the Killer

element had previously killed an element then the Killer element retrieves the graph it is

part of and calls the procedure CloneElt with its graph and the gSplatProto, a prede�ned

instance of a Splat. CloneElt clones the gSplatProto and adds it to the vgraph. The Killer

element then checks to see what is below it using the ObjectGrid::GetBelow method. If

something is below it the Killer element deletes that element with the prede�ned procedure

KillElement procedure. The Killer element then sets its origin to the grid point below its

current position.

Figure 48: Table Based Turing Machine

4.4 Turing Machine

We have developed an application, shown in �gure 48, that allows the user to graphically

construct and run a Turing machine. One creates the machine tape with a series of Tape

objects and places a Head object over the tape. Both the Tape and the Head have a text �eld

in which one can directly change the state of the element. One can de�ne the rules which

govern the activity of the Head in two ways. The �rst method is a table based approach

as shown in Figure 48. One can add any number of rules to the table. These rules consist

of a Head and Tape state, new Head and Tape state and a movement speci�cation. The

speci�cation of the Head and Tape state is an arbitrary text string which is used as a regular

expression in the process of matching the active Head to a rule.

The second method of de�ning rules, using �nite state machines, is shown in Figure 49.

A set of nodes and edges are used to de�ne the rules in this method. The value of a node

represents the state of the Head. The edges between nodes de�ne the input Tape value, the

changes to the Tape and the movement of the head.

The table shown in �gure 48 is built with a TableHeader and TableEntry elements. The

group mechanism discussed in Section 3.2.10 is used to de�ne the layout of the table.

Figure 50 shows the group speci�cation for the TableHeader element. This grouping states

that when a relation of type EntryOf with head of type TableEntry is added to a TableHeader

element then add the head to the group. A relation of type NextEntry is used to connect

57

Figure 49: Graph Based FSM Turing Machine

consecutive members of the group. A relation of type FirstEntry is used to connect the

TableHeader element to the �rst TableEntry. The NextEntry relation de�nes a location

constraint that places the NW corner of the head of the relation at the SW corner of the

tail. The FirstEntry relation uses a similar location constraint.

Figure 50: Turing Machine Table Speci�cation

case Switch:

gDoGraph = !gDoGraph; drawfunc = TuringFilter; MakeToolList();

action = ACTION_NONE; ForceRedraw(); break;

(a) TuringView SetAction2

bool TuringFilter(VGraphElement * elt){

if(gDoGraph) return (elt->IsKindOf(Node) || elt->IsKindOf(Edge) ||

elt->IsKindOf(TapeElement) || elt->IsKindOf(Head));

return (elt->IsKindOf(BaseRule) || elt->IsKindOf(TableHeader) ||

elt->IsKindOf(TapeEntry) || elt->IsKindOf(Head)); }

(b) TuringFilter

Figure 51: Turing Machine Switch Mode Code

58

The ability to switch between the tabular view and the FSM view is accomplished using

the Switch Mode entry in the Turing menu. As shown in Figure 51a when this command

has been called the global variable that de�nes which type of representation is used is tog-

gled. The method EscalanteView::MakeToolList is then called which causes the base view

to rebuild the palette using the list of prototypes returned from a call to GetProtoList, a

virtual method de�ned in EscalanteView. The TuringView class overwrites the GetProtoList

method to return one of two prototype lists, depending on which view is active. The �rst list

contains prototypes for the tabular view. The second list contains prototypes for the FSM

view. To �lter out the other elements from display the EscalanteView::drawfunc attribute

is set to the procedure TuringFilter shown in Figure 51b.

Figure 52: MView Class Speci�cation

4.5 A Multi-Representation Application

In Section 2.1.5 we discussed the basic uses of the structural graph element classes. In

this section we will provide further details as to the speci�cation and construction of the

application shown in Figure 7.

Figure 53: SxV Attribute Mapping

Figure 52 shows the class speci�cation of the MView application discussed in Section

2.1.5. The Square entity has a character attribute, label. The graphical representation of a

Square is a rounded rectangle and a text �eld. There is a bidirectional attribute mapping

between the Square::label attribute and the SN1::label attribute as shown in Figure 53. The

Contained relation uses the location constraint mechanism to de�ne containment of the head

of the relation by the tail. The Hierarchy relation uses location constraints to de�ne that

59

void MView::MakeGraph(SGraphElement* & sg, ObjList* & vgs){

gVGraph1 = new VGraphElement(); gVGraph1->Init();

gVGraph2 = new VGraphElement(); gVGraph2->Init();

sg = new SGraphElement(); sg->Init();

sg->AddVGelt(gVGraph1); sg->AddVGelt(gVGraph2);

gVGraph1->SetSGelt(sg); gVGraph2->SetSGelt(sg);

vgs->Add(gVGraph1); vgs->Add(gVGraph2);

ADDSV(SN1,Square,gVGraph1) ADDV(Circle,gVGraph1)

ADDSV(SR1,Contained,gVGraph1) ADDV(Edge,gVGraph1)

ADDSV(SN1,Square,gVGraph2) ADDSV(SR1,Hierarchy,gVGraph2)

Figure 54: MView::MakeGraph

the tail of the relation horizontally spans the head of the relation. The Y coordinate of the

top of head of the relation equals the 15 + the Y coordinate of the bottom of the relations

tail.

Figure 54 is the code in the MView::MakeGraph method that realizes this particular

system con�guration. Two VGraphElements are created, gVGraph1 and gVGraph2. These

are placed in the vgs list resulting in the initial creation of two windows. A structural graph

element is created and serves to bind the two visual graphs together. The structural and

visual elements are related with SGraphElement::AddVGelt and VGraphElement::SetSGelt

methods. The macro ADDSV(sclass,vclass, vgraph) creates an instance of sclass and vclass,

relates them to on another and places the vclass instance in the protos list of vgraph. The

macro ADDV(vclass, vgraph) creates an instance of vclass and places it in the protos list of

vgraph.

Figure 55: Guns and Bombs Application

60

Figure 56: Gun Speci�cation

VObject * GunsView::GetTopVObj(){

//double the range and offset the actual value

s1 = new Slider(cIdAX,eHor,TRUE); s1->SetMax(2*MAXA,0);

s1->SetVal(Point(MAXA+gAx,0)); s1->SetFlag(eVObjVFixed,TRUE);

... Do the same for Slider s2.

Filler*fill1=new Filler(Point(8,0));

fill1->SetFlag(eVObjHFixed|eVObjVFixed,TRUE);

...Do the same for Filler fill2

return new HExpander(Point(0,0),fill1,s1,f1,s2,f2,fill2,info,0);

}

Figure 57: GunsView GetTopVObj Method

4.6 Guns and Bombs

The Guns and Bombs application is shown in Figure 55. This system lets the user add a

number of Gun and Bomb elements. Both of these elements have a velocity and a velocity

increment �eld. On the �ring of a Gun a Bullet element is created and given as initial

velocity the velocity of the Gun. The velocity of the gun is incremented by the velocity

increment on every �ring. The initial velocity of a Bullet has an X and Y component which

is derived from the angle of the Gun. Bullet elements are registered with a timer object. For

every tick of the timer a Bullet recalculates its position based on its initial velocity and a

global X and Y force. A Trail relation is used to draw the trail the Bullet makes between the

Gun and the Bullet. On �ring a Bomb a set of Bullets are created in a circular pattern with

velocities based on the initial velocity of the Bomb and the initial trajectory of the Bullets.

This creates a �reworks pattern of Bullets about the Bomb element.

61

void GunsManager::Control(int id, int part, void *val){

if(part == eSliderThumb && id == cIdAX){

// Get the value and adjust from 0->2*MAXA to -MAXA -> MAXA

gAx = (float)*((int*)val) - MAXA;

ForceChanged(); //Update the views

... Do the same for the Y component Slider

GunsManager_BASE::Control(id,part,val); }

void GunsManager::ForceChanged(){

Iter next(MakeIterator()); //Iterate through all of the documents

GunsDocument * d; GunsView * gv;

while(d = (GunsDocument*) next())

if(d->IsKindOf(GunsDocument) && d->views){

Iter next2(d->views); //Iterate through all of the views

while(gv = (GunsView*)next2())

if(gv->IsKindOf(GunsView)) gv->ChangeForce();

}}

void GunsView::ChangeForce(){

if(f1) f1->SetString(form(" FX: %d ",(int)gAx),TRUE);

if(s1) s1->SetVal(Point((int)(MAXA + gAx),0),TRUE);

...Do the same for f2 and s2

Figure 58: GunsManager Control Method

The speci�cation of the image of a Gun is shown in Figure 56. The barrel of the gun is

de�ned with two LineGfx one of which denotes the end of the barrel with a di�erent color.

The Location Points used are as follows:

Line1: pt1 = P1; pt2 = 75%(P1->P2)

Line2: pt1 = P2; pt2 = 25%(P2->P1)

The GunsView is built without the default element palette. This is accomplished by

setting to false the makePalette argument of the GunsView constructor. The two sliders

at the top of the GunsView are created by overriding the EscalanteView::GetTopVObj()

method as shown in Figure 57. Two Sliders are created with ids cIdAX and cIdAY. These

sliders, s1 and s2, are attributes of the GunsView class. These sliders control the x and y

components of the global acceleration force. Because the range of values for a Slider are

positive we double the range and then o�set the actual values (which may be negative). The

variables f1, f2 are attributes of the GunsView class and are used to textually display the

values of the x and y components of the global acceleration force. The variable info is an

attribute of EscalanteView class and is used to give command feedback during editing.

Changes to the slider are caught in the GunsManager::Control method as shown in Figure

58. The change to a slider in a view is passed to the GunsDocument::Control method which

62

void Gun::Fire{

//Clone the bullet and add it to my graph

VGraphElement * mygraph = Pred(Meta(VMemberOf));

Bullet * b = (Bullet*) CloneElt(gBulletProto,mygraph,gPoint0);

if(gDoTrails){

Trail * t = (Trail*) CloneElt(gTrailProto,mygraph,gPoint0);

t->SetTailHead(this,b); }

...Set bullet's velocity, etc. }

Figure 59: Gun::Fire Method

passes it on to the GunsManager::Control method. In this method it is determined which

slider caused the activity and the global force variable is set to the new value of the slider.

The method GunsManager::ForceChanged is called. This method iterates through all of the

GunsView objects contained by all of the GunsDocument objects in the application. The

method GunsView::ChangeForce is called which updates the textual and slider representation

of the global forces.

Guns and Bombs are added through a menu command. The following is the code from

GunsView::SetAction2 that allows for the creation of Bombs through a menu command

(Same functionality for a Gun).

case AddBomb:

if(gBombProto == 0){

//Don't add the proto to the global set of elements

Set dummy; SetCurrentVGraphElementSet(&dummy);

gBombProto = new Bomb(); gBombProto->Init();

SetCurrentVGraphElementSet(0);

}

SetTool(gBombProto);

break;

Figure 59 shows the Gun::Fire method. When a Gun �res it creates a Bullet and a Trail

and adds them to its graph as shown in the Figure.

4.7 Another Multi-Representation Application

Figure 60 shows an example application that makes use of the multiple representation func-

tionality discussed in Section 2.1.5. This example application is made up of a set of four

groups of visual elements related to a group of structural elements. Figure 61 shows the

Class View of the speci�cation for this application.

The window shown in Figure 60a is made up of visual entities of type VN1 and visual

relations of type VR1 and Edge. The relation VR1 de�nes the spatial containment of the

63

(c)

(a)

(d)

(b)

Figure 60: Multiple Representations

Figure 61: Multiple Representations Class View

64

head of the relation by the tail. In Figure 60b there are VN2 and VR2 elements. The VR2

relations are shown as an edge. Figure 60c contains VN3 and VR3 elements. The VR3

relations use location constraints to de�ne a hierarchical layout of the VN3 entities.

Figure 60d contains VN4 and VR4 elements. The VN4 entities are displayed using two

TextFieldGfx. They are laid out using the grouping mechanism described in Section 3.2.10.

We make use of the VEntity class Graph, de�ned in the speci�cation, as the vgraph for this

window. One can use any visual element type as the vgraph for a view. The code that

realizes this architecture is shown in Figure 62.

The Graph class uses the grouping mechanism described in Section 3.2.10 to de�ne the

layout of the VN4 entities. The speci�cation used is shown in Figure 63. The First relation

de�nes the position of the initial VN4 element. The Next relation de�nes the position of the

successive elements. When a VN4 element is added to the graph First and Next relations

are added as de�ned in the group speci�cation. The VR4 class uses the location constraint

speci�cations shown in Figure 64 to position its point P1. An \x" is drawn at the point P1.

void MView2::MakeGraph(SGraphElement* & sg, ObjList* & vgs){

... Create gVGraph1, gVGraph2 and gVGraph3

//Here we use the Graph class as the vgraph

gVGraph4 = new Graph(); gVGraph4->Init();

...Connect the vgraphs to the sgraph and

...Add the vgraphs to the vgs list and create the prototypes

ADDSV(SN,VN1,gVGraph1) ADDSV(SR,VR1,gVGraph1)

ADDSV(SN,VN2,gVGraph2) ADDSV(SR,VR2,gVGraph2)

ADDSV(SN,VN3,gVGraph3) ADDSV(SR,VR3,gVGraph3)

ADDSV(SN,VN4,gVGraph4) ADDSV(SR,VR4,gVGraph4)

ADDV(Edge,gVGraph1)

Figure 62: MView2::MakeGraph

Figure 63: Graph Grouping

Both the VN and the SN classes have an integer attribute x. The attribute mapping

mechanism is used to bidirectionally map the VN:x and the SN:x attributes. Changes to

VN:x in a visual element are mapped to the corresponding structural elements SN:x attribute.

65

Figure 64: VR4 Location Constraints

This change is then mapped to the set of other visual elements. Each of the visual element

classes, VN1,VN2 and VN3 map the value of the attribute VN::x to various aspects of the

graphics which de�ne the representation of the element. In the case of VN1, VN::x is accessed

through an IntFieldGfx. The value of x is also mapped to the pen width of the rectangle. For

the VN2 class VN::x is mapped to the number of OvalGfx displayed. In VN2 the attribute is

manipulated through the IncDecGfx button. The VN3 class maps VN::x to the �lled state

of the rounded rectangle Gfx. If VN::x is greater than 5 then the Gfx is �lled. VN3 does

not have any way of directly manipulating VN:x. There is also a character attribute, label,

in the VN and SN classes. This is accessed in each of the derived VN classes through a

TextFieldGfx and is bidirectionally mapped between the VN and SN elements.

(a) (b) (c)

Figure 65: Visual Abstraction Example

4.8 A Visual Abstraction Hierarchy

Figure 65 shows a series of three screen dumps of an example application that implements

a visual abstraction hierarchy. Each of these images displays a di�erent abstraction state of

the same set of elements. In this application there are two entity classes, Node and SubGraph

and two relation classes Edge and SubGraphOf. The SubGraph and SubGraphOf elements

implement the actual visual abstraction hierarchy. An area of the screen is swept out when

adding a SubGraph. Elements contained in that area that are not part of a SubGraph (i.e.,

do not have an incoming SubGraphOf Relation) are added to the newly created SubGraph

element using the SubGraphOf relation. The Shown Flag event (see Figure 22) is set to

66

SubGraphOf * sof; VGraphElement * elt; ... Find element ptr

if(action == eCollapse){

SubGraph * sg = (SubGraph*)ptr->Pred(Meta(SubGraphOf));

sg->Set_rectShown(FALSE); //Show bitmap

CollapseSubgraph(sg);

Point ctr = sg->AsRect().Center(); //Get center

sg->SetP1P2(ctr - Point(15,15), ctr + Point(15,15)); //Shrink subgraph

}

if(action == eExpand) {

ITERATE_OUT(ptr,sof,SubGraphOf,elt, VGraphElement)

//Turn off the SubGraph and turn on the element

sof->SetEventDep(eShownFlag,eHdToTl,FALSE);

sof->SetEventDep(eShownFlag,eTlToHd,TRUE);

END_ITERATE_OUT }

if(action == eExpandButShow){

ITERATE_OUT(ptr,sof,SubGraphOf,elt, VGraphElement)

SetLocConstraint(sof,TRUE); //Turn on lcs

ptr->Set_rectShown(TRUE); //Show rectangle

sof->SetEventDep(eShownFlag,eTlToHd,TRUE); //Turn on element

END_ITERATE_OUT }

if(action == eDeleteHierarchy){

action = DELETE_ENTITY; SetNeed(NEED_ENTITY,Meta(SubGraph));

gDoDieHints = TRUE; //Propagate the die hint

Command *c = VisualAbstractionView_BASE::

DoLeftButtonDownCommand(p,t,clicks);

gDoDieHints = FALSE; return c;}

Figure 66: Implementation of Expand, Collapse, etc.

FALSE in the SubGraphOf relation to control the visibility of the elements of a SubGraph

so that initially only one \level" of the abstraction hierarchy is visible. The sweeping out of

an area on the creation of the SubGraph is caused by setting a ag through the method call

VGraphElement::NeedJoints(TRUE). When set, this causes the interface to behave similar

to when adding a relation. The Default Relations View of GrandView was used to de�ne

that when adding the SubGraph any contained elements are added to the SubGraph.

The SubGraph element has two images, a rectangle and bitmap. The visibility of these

images is controlled through an attribute, rectShown. When initially adding a SubGraph the

rectangle is shown. After adding the element the rectangle is turned o� and the bitmap is

turned on.

There are various ways to view the hierarchy the SubGraph and SubGraphOf elements

form. The �rst is to elide from view the elements of a SubGraph and show the SubGraph's

67

void CollapseSubgraph(SubGraph * sg, Set * s =0){

ITERATE_OUT(sg,sof,SubGraphOf,elt, VGraphElement)

SetLocConstraint(sof,FALSE);

sof->SetEventDep(eShownFlag,eTlToHd,FALSE);

sof->SetEventDep(eShownFlag,eHdToTl,TRUE);

if(elt->IsKindOf(SubGraph) && !s->Contains(elt)){

s->Add(elt);

CollapseSubgraph((SubGraph*)elt,s);}

END_ITERATE_OUT }

void SetLocConstraint(VRelation * rel, bool state){

LocConstraint * lc; ObjList *lclist = rel->GetLCList(ONTLIX);

if (lclist){

Iter lciter(lclist);

while(lc = (LocConstraint*)lciter()) lc->SetActive(state);

}}

Figure 67: Other Procedures

bitmap image as shown in Figure 65a. The incident Edge relations of an element (shown

as a directed edge) that has been elided from view connect up to the �rst shown parent

SubGraph of the elided element. Another way to display the hierarchy is shown in Figure

65b. In this method both the SubGraph and the elements of the SubGraph are shown.

The SubGraph's rectangle image is shown and the SubGraph contains the members of the

SubGraph. One can also elide from view the SubGraph and only show the elements of the

SubGraph as shown in Figure 65c.

Four commands have been de�ned using the De�ne Menu View of GrandView that im-

plement functionality pertaining to the abstraction hierarchy. The VisualAbstraction menu

that contains these commands is shown in Figure 65a. The implementation of these com-

mands (from the ActionDoLeft.h �le) s shown in Figures 66 and 67. The Collapse command

takes an element and �nds its parent SubGraph (if any). The rectangle image of the Sub-

graph is turned o� and the visibility of the elements of the SubGraph is turned o� with the

CollapseSubgraph procedure. The implementation of this procedure is shown in Figure 67.

This procedure recursively turns o� the visibility of the elements of the SubGraph and the

active ag of the Location Constraints of the SubGraphOf relations. The SubGraph is then

reduced in size with the SetP1P2 method. The result of the Expand command is to elide

from view the SubGraph and show the elements of the SubGraph. The ExpandButShow

command turns on the visibility of the elements of the SubGraph and shows the rectangle

image of the SubGraph. The Location Constraints in the SubGraphOf relations are turned

on with the SetLocConstraint procedure. This procedure, shown in Figure 67, gets the list

of Location Constraints from the relation using the GetLCList method. It then iterates

through the list turning on or o� the active ag of the constraint. The DeleteHierarchy

68

Figure 68: SubGraphOf Event View

command sets the view attribute action to DELETE ENTITY and calls the method Set-

Need(NEED ENTITY, Meta(SubGraph)). The global ag, gDoDieHints, is set to TRUE to

propagate the deletion of the SubGraph along the SUbGraphOf relations to the elements

of the SubGraph. The functionality for deleting elements in the EscalanteView method

DoLeftButtonDownCommand is used to actually delete the SubGraph.

Extensive use is made of the event propagation mechanism as shown in Figure 68, the

Event View for the SubGraphOf relation. From the top we have a MoveBy event de�ned

from the tail to the head. When a SubGraph element is moved this event speci�cation causes

the members of the SubGraph to also be moved. Next, two Copy events are set. When a

SubGraph is copied the contents of the SubGraph are also copied. Two Die events are used

to delete the SubGraphOf relation when the the tail or the head are deleted. The Shown

Flag from the tail to the head is initially FALSE. This causes the initial elision from view

of the member of the SubGraph. The End Point Reference event from head to tail is set to

TRUE. This causes the incident Edge relations of an element to link up to the �rst shown

parent SubGraph element when the initial element is not shown. The Die Hint event from

tail to head is used with the DeleteHierarchy command.

4.9 Example Gfx

We will now show and discuss a set of example images de�ned using GrandView. These

examples show the use of the di�erent Gfx types available and various aspects of the process

of specifying the image of an element.

4.9.1 Bar Chart

Figure 69 shows a speci�cation and the result of the speci�cation of an image for a BarChart

element. The BarChart element has an integer attribute value which is manipulated and

69

(a) (b)

Figure 69: Gfx Example 1

displayed through the image of the element. This image consists of an outer and inner

rectangle, an IncDecGfx and a set of TextGfx that provide the % labels. The value of the

IncDecGfx is mapped to the BarChart::value attribute. The location of the inner rectangle

is given as:

pt1 = SW;

pt2 = %(SE->NE)

The BarChart::value attribute is divided by 100 and mapped to the LP2 Percent at-

tribute of the inner rectangle. This attribute is the percent used in the Pt2 Location Point.

Changes to the BarChart::value attribute occur through the IncDecGfx. These changes are

propagated through the divide by 100 �lter to the LP2 Percent attribute of the inner rectan-

gle. The layout of the % labels is accomplished using the TRANSLP Location Point. This

is set to SW, W and NW, for the three TextGfx: \0%-", \50%-" and \100%-". The Trans

point for each of the TextGfx is set to E.

4.9.2 OneOfListGfx Example

The second example is shown in Figure 70. The image is made up of a OneOfListGfx and

two TextGfx. A OneOfListGfx is a set of labeled buttons, one of which is on. There are two

forms of this Gfx: in the �xed form, the size of the Gfx is determined by the size of the set

of buttons. If the Gfx is not �xed then the size is solely determined by the two Location

Points. The TextViewGfx component of the OneOfListGfx speci�cation is used to de�ne

the set of buttons and their labels. This speci�cation takes the form of: id label. The �rst

set of characters in each line is taken as an integer id. The following set of characters up to

the end of the line is taken as the label. (The MenuGfx speci�cations use the same format).

70

(a) (b)

Figure 70: Gfx Example 2

The value attribute of the OneOfGfx is the id of the currently selected button. The label

attribute of the OneOfGfx is the label of the currently selected button. In the example, the

value and label attributes of the OneOfListGfx is mapped to an x and str attribute of the

element. These, in turn, are mapped to the TextGfx objects. The Parse? button controls

whether the list of ids and labels is parsed or not. If the list is not parsed, the string in the

TextView is written verbatim in the generated code. This allows for the inclusion of complex

or lengthy lists (See apps/GrandView/SRCS/LPSpec.C).

4.9.3 Widget Gfx Example

Figure 71a shows a speci�cation of a collection of widget Gfx. Figure 71b shows the result

of this speci�cation. From the left there is a popup and pull down menu. These are de�ned

similarly as the OneOfListGfx described above. The SliderGfx speci�cation consists of a

direction and min and max �elds. Next is a collection of di�erent ButtonGfx. The speci�ca-

tion of a button consists of the label and the button type. The label of an ImageButtonGfx

is taken to be a bitmap �le name. The value attribute of a button is the state (0 or 1) of the

button. The size of an ImageButtonGfx is arbitrary. The speci�cation of a TextViewGfx

consists of initial text, dimension and whether the TextViewGfx is scrolled or not. The

dimension is the size of the underlying view that is contained within the scroller. The Reg-

ExpFieldGfx lets one de�ne a regular expression that any input to the �eld must satisfy. In

the case of the example, the only legal input is lower case letters. A TextState element is

connected to the RegExpFieldGfx element in the Gfx View. The TextState element allows

one to to specify text size, font, color, etc.

71

(a)

(b)

Figure 71: Gfx Example 3

4.9.4 Displaying tokens

The representation of a visual language may incorporate the display of multiple graphical

images that represent some internal state (e.g., tokens). Figure 72a shows the Gfx speci�-

cation of an element and Figure 72b shows the resulting image. This speci�cation consists

of a IntFieldGfx, a Repeating Gfx Set and a �lled OvalGfx. The value of the IntFieldGfx

is mapped to an attribute x. The attribute x is mapped to the Repgfx::howmany attribute

that determines how many copies of the child Gfx are created. The Repeating Gfx Set lays

out its children SE = NW. The OvalGfx is the child of the Repeating Gfx Set. As seen

in Figure 72b the value of the x attribute has been set to 4 through the IntFieldGfx. This

value has been propagated to the Repeating Gfx Set, causing the creation of 4 ovals, laid

out according to the speci�cation.

4.9.5 Using the OriginOf and AngleOf Elements

One can use the OriginOf and AngleOf elements (they are relations) to de�ne a rotated

coordinate system. The head of the relation is preset to be a Location Point element (one

72

(a) (b)

Figure 72: Gfx Example 4

(a) (b)

Figure 73: De�ning New Coordinate System

should ignore the Pt: �eld). One attaches the tail of the relation to the GfxSpec element

to be rotated. The head of the OriginOf relation de�nes the new origin of the coordinate

system. The head of the AngleOf relation de�nes the positive X axis of the new coordinate

system. One de�nes the position of a Gfx object with the Location Points as described

above. OriginOf and AngleOf elements are used to rotate the Gfx. For example, Figure 73a

shows how these elements are used to de�ne di�erent arrowhead styles. (Figure 73b shows

the result of this speci�cation.) The line perpendicular to the edge is de�ned with Location

Points: Pt1 = Tail + (0,10), Pt2 = Tail + (0,-10). The point de�ned as the new origin is the

tail. The point de�ned as the new angle is the �rst joint or the head. The double arrowhead

at the head of the relation is de�ned using two PolyGfx. The OriginOf point for both of

these PolyGfx is the head. The AngleOf point is the Last Joint or Tail. The Location Points

of these PolyGfx are de�ned as follows:

73

PolyGfx1: Pt1 = Head + (15,-10)

Pt2 = Head

Pt3 = Head + (15,10)

PolyGfx2: Pt1 = Head + (25,-10)

Pt2 = Head + (10,0)

Pt3 = Head + (25,10)

74

5 Acknowledgments

Escalante is a realization of the Ph.D. research conducted by author McWhirter; he has

been supported in this work by a grant from US West Advanced Technologies. Eckert has

used Escalante to build several visual applications, some of which are described in Section 4,

and has been supported by a grant from NCR. Nutt has been supported by Bull Worldwide

Information Systems and US West Advanced Technologies on this work.

References

[1] A.Weinand, E. Gamma, and R. Marty. ET++ - an object oriented application framework

in C++. In OOPSLA'88 Conference Proceedings, September 1988.

75

Index

Action �les, 36

ActionDoLeft.h, 34

ActionSetAction2.h, 34

Active button, 32

Add prototype, 16

ADDSV macro, 60

ADDV macro, 51, 60

AngleOf element, 72

Attribute �lter, 4, 22, 27

Attribute mapping, 4

Attribute view, 17, 22

ATTRID, 17, 25

base class hierarchy, 3

BaseElement, 16

Blocks system, 56

Boolean Logic Circuit, 3, 27, 47

BoolOf relation, 27

BoolSet element, 27

Build Everything command, 33, 35, 36

ButtonGfx, 22, 71

CalcHdPt, 7

CalcTlPt, 7

Change Target Name command, 36

Change view, 14

ChangeAttribute method, 38

Characterization framework, 3

Check Tail/Head view, 27, 50

Child element, 35

ChildOf relation, 16, 35

class Class, 13

Class Code �les, 36

Class view, 14, 15, 35, 36

CloneElt, 63

color map, 55

connected elements, 5

contained by relation, 35

contains relation, 35

control module, 1

Default relations, 34, 38

De�ne Menu view, 33

Delete menu, 15

Direction menu, 33

Distance �eld, 31

DoLeftButtonDownCommand, 39, 69

DoMiddleButtonDownCommand, 39

DoSetupMenu, 39

Edit menu, 15

Editor module, 1

element, 5

Element Group, 33, 57, 65

element type �eld, 33

EltIsKindOf element, 27

ET++, 13

ETRC �le, 13, 36

Event propagation, 6, 25

Event View, 25, 69

File menu, 15, 35

�lter of relation, 27

Filtering elements, 59

First proto �eld, 33

�rst prototype �eld, 33

Func �eld, 35

funcId �eld, 27

future data references, 25

GetAttribute method, 38

GetLCList method, 68

Gfx, 3, 7

Gfx Attr menu, 22

Gfx Id �eld, 32

Gfx Set, 21

Gfx State menu, 15

Gfx View, 15, 18

GfxBase image, 18

GfxSpec, 15, 18

GfxState menu, 18

76

Grand speci�cation language, 13

GrandView menu, 14, 35, 36

GrandView menus, 14

GrandView views, 14

Graphic primitives, 7

GraphObject class, 4

GridElement, 40, 53, 56

group id �eld, 33

Group View, 57, 65

Group view, 33

Guns and Bombs, 61

head, 5

Hint button, 32

hint ag, 25

hooks, 43

How many menu, 35

HS �les, 36

Ids �les, 36

ImageButtonGfx, 71

in relation, 5

IncDecGfx, 25, 70

Init function, 38

InitAfterClone function, 38

InitClone function, 38

IsA method, 14

IsKindOf method, 14

Language module, 1, 3

language-centered approach, 1

LC Id �eld, 32

left of relation, 35

Line Gfx, 21

Location constraint, 7, 31, 58, 59, 65

Location Point element, 20

MakeGraph, 39

MakeGraph �les, 36

menu action speci�cation, 34

Meta macro, 14

MetaDef macro, 14, 38

Multiple representations, 9, 12, 59, 63

near relation, 35

NewMetaImpl macro, 14

ObjectGrid, 40, 53, 56

OneOfListGfx, 70

OriginOf element, 72

out relation, 5

Oval Gfx, 21

over relation, 35

Parent element, 35

Parse? button, 71

PolyGfx, 20, 73

Pred, 45, 48

PrintOn function, 38

Prototype view, 14, 16

PtGfx, 8

ReadFrom function, 38

Rectangle Gfx, 21

RegExpFieldGfx, 71

Rel proto �eld, 33

relation, 5

Relation attribute map, 27, 50

Relation Group, 33, 57, 65

relation prototype �eld, 33

relation type �eld, 33

Relative Gfx Set, 21, 22

RelGfxOf relation, 20, 22

RelGfxSet, 8

RelPred, 45

RelSucc, 45

Repeating Gfx Set, 21, 72

RepGfxSet, 8

right of relation, 35

S � V Attribute Map view, 30

SEntity, 9, 16

SetAction2, 39

SetCurrentVGraphElementSet, 63

SetNeed method, 39

SGraphElement, 9

Show/Hide menu, 14, 18, 38

Slider Gfx, 21, 71

77

Source Class �eld, 32

Source type �eld, 31

SP2 �eld, 31

SRelation, 9, 16

StickyX button, 32

StickyY button, 32

Stretchy button, 32

Structural elements, 9, 12, 30, 59, 63

Succ, 45

System architecture, 1, 10, 12

tail, 5

Target Class �eld, 32

Text Include, 18

TextFieldGfx, 22

TextGfx, 21, 22, 70

TextGfx object, 20

TextViewGfx, 71

theimage attribute, 6, 7

Timer, 40, 53, 56

TlHdFunc element, 27

tokens, 72

Trans point, 70

Trans: menu, 18

Turing Machine system, 57

under relation, 35

Unique Attribute Values, 45

Unique new? button, 35

Unique old? button, 35

VEntity, 6, 16

VGraphElement, 3, 6, 20

View menu, 15

View/Flags menu, 25, 32

views, 10, 12

Visual Abstraction, 66

Visual elements, 6, 9, 12

Visual Entity, 16

visual program, 3

Visual Relation, 16

VObjGfx, 8

VRelation, 7, 16

WaterWorks system, 53

Write out all, 35

Write out all command, 36

Write out command, 33, 35, 36

Write out dt rels command, 35

X �eld, 35

Y �eld, 35

78

